American Journal of Potato Research

, Volume 86, Issue 6, pp 481–489 | Cite as

Impact of Zebra Chip Disease on the Mineral Content of Potato Tubers

  • Godfrey P. Miles
  • Jeremy L. Buchman
  • Joseph E. Munyaneza


Zebra chip (ZC) is an emerging and damaging disease of potato (Solanum tuberosum L.) that has been documented in potato fields throughout the southwestern United States, Mexico, Central America, and most recently New Zealand. The bacterium “Candidatus Liberibacter” has been putatively identified as the causal agent of this disease and the potato psyllid, Bactericera cockerelli (Sulc), as the insect vector. Tuber symptoms of ZC-infected plants include collapsed stolons, enlarged lenticels, vascular tissue browning, medullary ray discoloration, and necrotic flecking. ZC tuber symptoms are similar to those of potato diseases which exhibit perturbations in tuber mineral composition resulting in internal necrotic disorders. To determine the effect of ZC disease on the mineral content of potato tubers, concentrations of P, K, S, Ca, Mg, Na, Fe, Al, Mn, Cu, Zn, and B were analyzed in ‘Atlantic’ potatoes from ZC-infected and free plants, for both tuber flesh and peel tissues. The potatoes were grown at Weslaco, TX and Wapato, WA, two different and distant geographical locations under controlled cage conditions. Results showed that flesh tissue from ZC-infected tubers had significantly higher concentrations of P, K, and Ca at both locations, whereas, ZC-infected tuber flesh from Weslaco had higher concentrations of Mg, Cu, Zn, and B, while concentrations of Fe and Al were higher in ZC-infected tuber flesh from Wapato. Peel tissue from ZC-infected tubers were found to have a significantly higher level of Zn at both locations, whereas the levels of P and Na were found to significantly higher in peel tissue from Wapato and Weslaco, respectively. Finally, Mg was found to be significantly higher in ZC-free tubers from both locations and levels of Cu and B were significantly higher in ZC-free peel tissue from Wapato.


Bactericera cockerelli Potato psyllid Zebra chip disease Candidatus Liberibacter Mineral content Solanum tuberosum Cultivar Atlantic 


Zebra chip (ZC) es una enfermedad emergente y dañina de papa (Solanum tuberosum L.) que ha sido documentada en campos de papa en todo el sureste de los Estados Unidos, México, Centro América, y recientemente en Nueva Zelandia. Se ha identificado presuntamente a la bacteria “Candidatus liberibacter” como el agente causal de esta enfermedad, y al psílido de la papa Bactericera cockerelli (Sulc) como el insecto vector. Los síntomas del tubérculo de plantas infectadas con ZC incluyen el colapso de los estolones, lenticelas alargadas, oscurecimiento del tejido vascular, coloración radial medular y manchas necróticas. Los síntomas de ZC en tubérculo son similares a los de enfermedades de papa que muestran alteraciones en la composición mineral del tubérculo que resulta en desordenes internos necróticos. A fin de determinar el efecto de la enfermedad ZC en el contenido mineral de tubérculos de papa, se analizaron las concentraciones de P, K, S, Ca, Mg, Na, Fe, Al, Mn, Cu, Zn, y B, en plantas infectadas con ZC y sanas de la variedad Atlantic de papa, tanto de la pulpa como de la cutícula. Las papas se cultivaron en Weslaco, TX y Wapato, WA, dos ubicaciones geográficas diferentes y distantes, bajo condiciones controladas de confinamiento. Los resultados mostraron que el tejido de la pulpa de tubérculos infectados con ZC tenían significativamente mayores concentraciones de P, K, y Ca en ambas localidades, mientras que la pulpa de tubérculos infectados con ZC de Weslaco tenían mayores concentraciones de Mg, Cu, Zn, y B, y las concentraciones de Fe y Al fueron mas altas en pulpa de tubérculos infectados con ZC de Wapato. Se encontró que el tejido de la cutícula de tubérculos infectados con ZC tenía un nivel significativamente más alto de Zn en ambas localidades, mientras que P y Na fue mayor con significancia en tejido cuticular de Wapato y Weslaco, respectivamente. Finalmente, se encontró que el Mg fue significativamente mayor en tubérculos libres de ZC de ambas localidades, y los niveles de Cu y B fueron significativamente más altos en tejido cuticular libre de ZC de Wapato.



We thank Jeff Upton, Millie Heidt, Dan Hallauer, Blaine Heilman, and Andy Cruz for their invaluable technical assistance. We are also grateful to Drs. Dave Horton, Steve Garczynski, and Roy Navarre for their critical reading of this manuscript. Financial support for this work was partially provided by Frito Lay, Inc., Texas Department of Agriculture, and the USDA-ARS State Cooperative Potato Research Program.


  1. Abad, J.A., M. Bandla, R.D. French-Monar, L.W. Lieting, and G.R.G. Clover. 2009. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Disease 93: 108.CrossRefGoogle Scholar
  2. Bateman, D.F. 1964. An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia-infected hypocotyls of bean. Phytopathology 54: 438–445.Google Scholar
  3. Bateman, D.F., and R.D. Lumsden. 1965. Relation of calcium content and nature of the pectic substances in bean hypocotyls of different ages to susceptibility to an isolate of Rhizoctonia solani. Phytopathology 55: 734–738.Google Scholar
  4. Bretzloff, C.W. 1971. Calcium and magnesium distribution in potato tubers. American Journal of Potato Research 48: 97–104.CrossRefGoogle Scholar
  5. Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tubers using 45Ca: a new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323.CrossRefGoogle Scholar
  6. Chandra, S., and N.I. Mondy. 1981. Effect of potato virus X on the mineral content of potato tubers. Journal of Agricultural and Food Chemistry 29: 811–814.CrossRefPubMedGoogle Scholar
  7. Clarke, R.G., M.L. Powelson, and L. Beraha. 1983. Association of viral, bacterial and fungal pathogens with vascular discoloration of Russet Burbank potato tubers. American Potato Journal 60: 235–243.CrossRefGoogle Scholar
  8. Cother, E.J., and B.R. Cullis. 1992. The influence of tuber position on periderm calcium content and its relationship to soft rot susceptibility. Potato Research 35: 271–277.CrossRefGoogle Scholar
  9. Crosslin, J.M., and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.CrossRefGoogle Scholar
  10. Davies, H.V. 1998. Physiological mechanisms associated with the development of internal necrotic disorders of potato. American Journal of Potato research 75: 37–44.CrossRefGoogle Scholar
  11. Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new Huanglongbing (HLB) species, “Candidatus Liberibacter psyllaurous”, found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sucl). Applied and Environmental Microbiology 74: 5862–5865.CrossRefPubMedGoogle Scholar
  12. Hooker, W.J. 1981. Compendium of potato diseases. St. Paul: American Phytopathological Society.Google Scholar
  13. Hoveland, C.S., K.C. Berger, and H.M. Darling. 1954. The effect of mineral nutrition on the expression of potato leaf roll virus symptoms. Soil Science Society of America Journal 18: 53–55.CrossRefGoogle Scholar
  14. Goolsby, J.A., J. Adamczyk, B. Bextine, D. Lin, J.E. Munyaneza, and G. Bester. 2007a. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science 59: 85–94.Google Scholar
  15. Goolsby, J.A., B. Bextine, J.E. Munyaneza, M. Sétamou, J. Adamczyk, and G. Bester. 2007b. Seasonal abundance of sharpshooters, leafhoppers, and psyllids associated with potatoes affected by zebra chip disorder. Subtropical Plant Science 59: 15–23.Google Scholar
  16. Kleinhenz, M.D., R.V. James, W.R. Stevenson, and J.P. Palta. 1995. Calcium application increases potato tuber medullary tissue calcium concentration and may reduce theincidence and severity of soft rot due to Erwinia carotovora pv. atroseptica. Horticultural Science 30: 623.Google Scholar
  17. Kleinhenz, M.D., J.P. Palta, and G.C. Gunter. 1999. Impact of source and timing of calcium and nitrogen applications on ‘Atlantic’ potato tuber calcium concentrations and internal quality. Journal of the American Society for Horticultural Science 124: 498–506.Google Scholar
  18. Krištůfek, V., J. Diviš, I. Dostálková, and J. Kalčík. 2000. Accumulation of mineral elements in tuber periderm of potato cultivars differing in susceptibility to common scab. Potato Research 43: 107–114.CrossRefGoogle Scholar
  19. Lacey, M.J., and C.R. Wilson. 2001. Relationship of common scab incidence of potatoes grown in Tasmanian ferrosol soils with pH, exchangeable cations and other chemical properties of those soils. Journal of Phytopathology 149: 679–683.CrossRefGoogle Scholar
  20. Lambert, D.H., and F.E. Manzer. 1991. Relationship of calcium to potato scab. Phytopathology 81: 632–636.CrossRefGoogle Scholar
  21. Lambert, D.H., M.L. Powelson, and W.R. Stevenson. 2005. Nutritional interactions influencing disease of potato. American Journal of Potato Research 82: 309–319.CrossRefGoogle Scholar
  22. Lee, J., and J.J. Rudd. 2002. Calcium dependent protein kinases: versatile plant signaling components necessary for pathogen defense. Trends in Plant Science 7: 97–98.CrossRefPubMedGoogle Scholar
  23. Liefting, L.W., Z.C. Perez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.CrossRefGoogle Scholar
  24. Lin, H., H. Doddapaneni, J.E. Munyaneza, E.L. Civerolo, V.G. Sengoda, J.L. Buchman, and D.C. Stenger. 2008. Molecular characterization and phylogenetic analysis of 16S rRNA from a new “Candidatus Liberibacter” strain associated with zebra chip disease of potato (Solanum tuberosum L.) and the potato psyllid (Bactericera cockerelli Sucl). Journal of Plant Pathology 91: 215–219.Google Scholar
  25. McGuire, R.G., and A. Kelman. 1984. Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathology 74: 1250–1256.CrossRefGoogle Scholar
  26. McGuire, R.G., and A. Kelman. 1986. Calcium in potato tuber cell walls in relation to tissue maceration by Erwinia carotovora pv. atroseptica. Phytopathology 76: 401–406.CrossRefGoogle Scholar
  27. Mills, H.A., and J.B. Jones Jr. 1996. Plant analysis handbook 11. Atlanta: Horticultural solutions.Google Scholar
  28. Mondy, N.I., and R.L. Koch. 1978. Effect of potato virus X on enzymatic darkening and lipid content of potatoes. Journal of food Science 43: 703–705.CrossRefGoogle Scholar
  29. Mondy, N.I., and R. Ponnampalam. 1986. Potato quality as affected by source of magnesium fertilizer: nitrogen, minerals, and ascorbic Acid. Journal of Food Science 51: 352–354.CrossRefGoogle Scholar
  30. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.CrossRefPubMedGoogle Scholar
  31. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  32. Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Segoda. 2008. Impact of different potato psyllid populations on Zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.Google Scholar
  33. Munyaneza, J.E., V.G. Sengoda, J.M. Crosslin, G. De la Rosa-Lozano, and A. Sanchez. 2009. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with zebra chip disease in México. Plant Disease 93: 552.CrossRefGoogle Scholar
  34. Murphy, H.J. 1968. Potato vine killing American. Potato Journal 45: 472–478.CrossRefGoogle Scholar
  35. Palta, J.P. 1996. Role of calcium in plant responses to stresses: linking basic research to the solutions of practical problems. Horticultural Science 31: 51–57.Google Scholar
  36. Pyke, W.E., and G. Johnson. 1940. The relationship of calcium ion to the sloughing of potatoes. American Potato Journal 17: 1–9.CrossRefGoogle Scholar
  37. Rivero, R.C., P.S. Suárez, E.M. Rodríguez, J.D. Martín, and C.D. Romara. 2003. Mineral concentrations in cultivars of potatoes. Food Chemistry 83: 247–253.CrossRefGoogle Scholar
  38. Simmons, K.E., and K.A. Kelling. 1987. Potato responses to calcium application on several soil types. American Potato Journal 64: 119–136.CrossRefGoogle Scholar
  39. Sterling, C., and F.A. Bettleheim. 1955. Factors associated with potato texture. III. Physical attributes and general conclusions. Food Research 20: 130–137.Google Scholar
  40. Sterrett, S.B., K.G. Haynes, G.C. Yencho, M.R. Henninger, and B.T. Vinyard. 2006. 4x–2x potato clones with resistance or susceptibility to Internal Heat Necrosis differ in tuber mineral status. Crop Science 46: 1471–1478.CrossRefGoogle Scholar
  41. Stockwell, V., and P. Hanchey. 1982. Cytohistochemical techniques for calcium localization and their application to diseased plants. Plant Physiology 70: 244–251.CrossRefPubMedGoogle Scholar
  42. True, R.H., J.M. Hogan, J. Augustin, S.J. Johnson, C. Teitzel, R.B. Toma, and R.L. Shaw. 1978. Mineral composition of freshly harvested potatoes. American Potato Journal 55: 511–519.CrossRefGoogle Scholar
  43. Ulrychová, M., and J. Limberk. 1968. Phosphorous disturbances associated with potato leafroll virus infection. Biologia Plantarum 10: 311–317.CrossRefGoogle Scholar
  44. Weintraub, M., and H.W.J. Ragetli. 1961. Cell wall composition of leaves with a localized virus infection. Phytopathology 51: 215–219.Google Scholar
  45. Whittenberger, R.T., and G.C. Nutting. 1950. Observations on the sloughing of potatoes. Food Research 15: 331–336.PubMedGoogle Scholar

Copyright information

© Potato Association of America 2009

Authors and Affiliations

  • Godfrey P. Miles
    • 1
  • Jeremy L. Buchman
    • 1
  • Joseph E. Munyaneza
    • 1
  1. 1.USDA-ARS, Yakima Agricultural Research LaboratoryWapatoWAUSA

Personalised recommendations