American Journal of Potato Research

, Volume 86, Issue 2, pp 88–95 | Cite as

LC-MS Analysis of Phenolic Compounds in Tubers Showing Zebra Chip Symptoms

  • Duroy A. Navarre
  • Roshani Shakya
  • Joanne Holden
  • James M. Crosslin


A new potato disorder called Zebra Chip (ZC) has been identified in the United States and has been especially problematic in Texas, where substantial economic losses have been incurred. Upon frying, ZC tubers develop a dark “zebra” pattern of discoloration. LC-MS analysis of methanolic extracts from symptomatic tubers revealed major alterations in aromatic amino acids and phenolic compounds. Tyrosine concentrations increased over 8-fold in some symptomatic tubers, reaching up to 3 mg/g DW; This increase may be a major component of the browning of ZC tubers. No marked differences in chlorogenic acid concentrations were found, but differences in other caffeoyl derivatives, including caffeoylpolyamines, were observed. Salicylic acid, a key regulator of plant defenses, was present at very high concentrations in ZC tubers, which is consistent with what would be expected from tubers mounting a defense response to a pathogen. ZC tubers may be a useful model to study how certain plant-microbe/pest or plant-environment interactions affect tuber physiology.


Browning Salicylic acid Tyrosine Phenolics Chlorogenic acid 



Zebra Chip


liquid chromatography mass spectrometry


salicylic acid


diode array detector


systemic acquired resistance


polyphenol oxidase


Un nuevo desorden de la papa llamado “Zebra chip” (conocido como papa manchada o papa rayada) (ZC) ha sido identificado en los EEUU y es especialmente problemático en Texas, donde se registraron pérdidas económicas sustanciales. Una vez fritos, los tubérculos con ZC desarrollan un patrón de coloración oscura tipo “zebra”. El análisis LC-MS de extractos metanólicos en tubérculos sintomáticos reveló una alteración importante en amino ácidos aromáticos y compuestos fenólicos. Las concentraciones de tirosina se incrementaron ocho veces en algunos tubérculos sintomáticos, llegando hasta 3 mg/g peso seco; este incremento puede ser un componente importante en el oscurecimiento de los tubérculos ZC. No se encontraron marcadas diferencias en la concentración de ácido clorogénico, pero se observaron diferencias en otros derivados del cafeoil, incluyendo las cafeoilpoliaminas. El ácido salicílico, un regulador clave de las defensas de las plantas, estuvo presente en muy altas concentraciones en los tubérculos ZC, lo cual coincide con lo que se espera de tubérculos que desarrollan una respuesta de defensa a un patógeno. Los tubérculos ZC pueden ser un modelo útil para estudiar cómo ciertas enfermedades causadas por microbios o interacciones de la planta con el medio ambiente afectan la fisiología del tubérculo.


  1. Avila, F.J., B.D. Bruton, J. Fletcher, J.L. Sherwood, S.D. Pair, and U. Melcher. 1998. Polymerase chain reaction detection and phylogenetic characterization of an agent associated with yellow vine disease of cucurbits. Phytopathology 88: 428–436.PubMedCrossRefGoogle Scholar
  2. CNAS. 2006. Economic impacts of Zebra Chip on the Texas potato industry. Center for North American Studies. Texas A&M University.
  3. Crosslin, J.M., and P.E. Thomas. 1995. Detection of tobacco rattle virus in tubers exhibiting symptoms of corky ringspot by polymerase chain reaction. American Journal of Potato Research 72: 605–609.CrossRefGoogle Scholar
  4. Crosslin, J.M., G.J. Vandemark, and J.E. Munyaneza. 2006. Development of a real-time, quantitative PCR for detection of the Columbia Basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Disease 90: 663–667.CrossRefGoogle Scholar
  5. Crosslin, J.M., P.B. Hamm, K.S. Pike, T.M. Mowry, P. Nolte, and H. Mojtahedi. 2007. Managing diseases caused by viruses, viroids, and phytoplasmas. In Potato Health Management, 2nd edition. Ed. D.A. Johnson, 161–169. APS Press.Google Scholar
  6. Coetzer, C., D. Corsini, S. Love, J. Pavek, and N. Tumer. 2001. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase. Journal of Agricultural and Food Chemistry 49: 652–657.PubMedCrossRefGoogle Scholar
  7. Dempsey, D.A., J. Shah, and D.F. Klessig. 1999. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences 184: 547–575.CrossRefGoogle Scholar
  8. Deng, S., and C. Hiruki. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of microbiological methods 14: 53–61.CrossRefGoogle Scholar
  9. Facchini, P.J., J. Hagel, and K.G. Zulak. 2002. Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany 80: 577–589.CrossRefGoogle Scholar
  10. Gudmestad, N.C., and G.A. Secor. 2007. Zebra chip: a new disease of potato. Potato Eyes 19: 1–4.Google Scholar
  11. Jagoueix, S., J.M. Bove, and M. Garnier. 1996. PCR detection of the two ‘Candidatus’ liberibacter species associated with greening disease of citrus. Molecular and Cellular Probes 10: 43–50.PubMedCrossRefGoogle Scholar
  12. Jain, R.K., S.S. Pappu, H.R. Pappu, A.K. Culbreath, and J.W. Todd. 1998. Molecular diagnosis of tomato spotted wilt tospovirus infection of peanut and other field and greenhouse crops. Plant Dis 82: 900–904.CrossRefGoogle Scholar
  13. Kaanane, A., and T.P. Labuza. 1989. The Maillard reaction in foods. Progress in Clinical and Biological Research 304: 301–27.PubMedGoogle Scholar
  14. King, R.R., and L.A. Calhoun. 2005. Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions. Phytochemistry 66: 2468–73.PubMedCrossRefGoogle Scholar
  15. Loake, G., and M. Grant. 2007. Salicylic acid in plant defence—the players and protagonists. Current Opinion in Plant Biology 10: 466–72.PubMedCrossRefGoogle Scholar
  16. Lorenz, K.-H., B. Schneider, U. Ahrens, and E. Seemüller. 1995. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 85: 771–776.CrossRefGoogle Scholar
  17. Matheis, G., and H.D. Belitz. 1977. Studies on enzymic browning of potatoes (Solanum tuberosum). I. Phenoloxidases and phenolic compounds from different varieties. Z Lebensm Unters Forsch 163: 92–5.PubMedCrossRefGoogle Scholar
  18. Matheis, G., and H.D. Belitz. 1978. Studies on enzymic browning of potatoes (Solanum tuberosum). IV. Relationship between tyrosine turnover and rate of browning. Z Lebensm Unters Forsch 167: 97–100.PubMedCrossRefGoogle Scholar
  19. Mayer, A.M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318–2331.PubMedCrossRefGoogle Scholar
  20. Metraux, J.P., H. Signer, J. Ryals, E. Ward, M. Wyss-Benz, J. Gaudin, K. Raschdorf, E. Schmid, W. Blum, and B. Inverardi. 1990. Increase in Salicylic Acid at the Onset of Systemic Acquired Resistance in Cucumber. Science 250: 1004–1006.PubMedCrossRefGoogle Scholar
  21. Minsavage, G.V., C.M. Thompson, D. Hopkins, R.M.B.V.C. Leite, and R.E. Stall. 1994. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84: 456–461.CrossRefGoogle Scholar
  22. Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip,”a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.PubMedCrossRefGoogle Scholar
  23. Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that Zebra Chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.Google Scholar
  24. NZ-MAF. 2008. Mystery bacteria found in NZ linked to potato disease in US. Accessed 25 July 2008.
  25. Nie, X., and R.P. Singh. 2002. A new approach for the simultaneous differentiation of biological and geographical strains of Potato virus Y by uniplex and multiplex RT-PCR. Journal of Virological Methods 104: 41–54.PubMedCrossRefGoogle Scholar
  26. Presting, G.G., O.P. Smith, and C.R. Brown. 1995. Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology 85: 436–442.CrossRefGoogle Scholar
  27. Richards, B.L., and H.L. Blood. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.Google Scholar
  28. Robinson, D.J. 1992. Detection of tobacco rattle virus by reverse transcription and polymerase chain reaction. Journal of Virological Methods 40: 57–66.PubMedCrossRefGoogle Scholar
  29. Schmidt, A., R. Grimm, J. Schmidt, D. Scheel, D. Strack, and S. Rosahl. 1999. Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase. Journal of Biological Chemistry 274: 4273–80.PubMedCrossRefGoogle Scholar
  30. Schneider, B., E. Seemüller, C.D. Smart, and B.C. Kirkpatrick. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Molecular and Diagnostic Procedures in Mycoplasmology, eds. S. Razin and J.G. Tully 1: 369–380. Academic Press.Google Scholar
  31. Secor, G.A., and V.V. Rivera-Vara. 2004. Emerging diseases of cultivated potato and their impact on Latin America. Rev. Latinoamericana de la Papa 1Suppl.: 1–8.Google Scholar
  32. Shakya, R., and D.A. Navarre. 2006. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. Journal of Agricultural and food Chemistry 54: 5253–5260.PubMedCrossRefGoogle Scholar
  33. Spark, A.A. 1969. Role of amino acids in non-enzymic browning. Journal of the Science of Food and Agriculture 20: 308–316.CrossRefGoogle Scholar
  34. Thygesen, P.W., I.B. Dry, and S.P. Robinson. 1995. Polyphenol oxidase in potato. A multigene family that exhibits differential expression patterns. Plant Physiology 109: 525–531.PubMedCrossRefGoogle Scholar
  35. Xu, H., T.-L. DeHaan, and S.H. De Boer. 2004. Detection and confirmation of potato mop-top virus in potatoes produced in the United States and Canada. Plant Disease 88: 363–367.CrossRefGoogle Scholar
  36. Yalpani, N., P. Silverman, T.M. Wilson, D.A. Kleier, and I. Raskin. 1991. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809–818.PubMedCrossRefGoogle Scholar

Copyright information

© Potato Association of America 2008

Authors and Affiliations

  • Duroy A. Navarre
    • 1
    • 2
  • Roshani Shakya
    • 3
  • Joanne Holden
    • 1
  • James M. Crosslin
    • 1
  1. 1.USDA-ARSProsserUSA
  2. 2.Department of Plant PathologyWashington State UniversityPullmanUSA
  3. 3.Department of HorticultureWashington State UniversityPullmanUSA

Personalised recommendations