Colonization and Sporulation of Phytophthora infestans on Volunteer Potatoes Under Western Washington Conditions

Article

Abstract

Growth, sporulation, and survival of Phytophthora infestans on volunteer potato tubers, was investigated under temperatures representative of winter (4°C, 7°C, and 10°C) and spring (13°C, 16°C, 19°C) soil conditions in western Washington. Inoculated tubers stored at 10°C for 8 days had a significantly (P < 0.05) higher percentage of disease symptoms on tuber surfaces and a higher number of lenticels and eyes with P. infestans sporulation compared to those stored at 4°C or 7°C. Sporulation of P. infestans on cut tuber surfaces was observed following 3-week storage at the three winter soil temperatures. After 12-week storage, tubers inoculated with a US-8 isolate had a significantly higher percentage of late blight on cut surfaces than those inoculated with a US-11 isolate (70% versus 50%, respectively). For spring soil temperature studies, tubers inoculated with the US-8 isolate and held at 19°C had a significantly higher number of lenticels per tuber with P. infestans sporulation than tubers held at 13°C or 16°C. Sporulation of P. infestans on tuber surfaces was detected on infected tubers buried 5-cm deep in potting medium at all tested winter and spring temperatures for 3- or 6-day periods, respectively. The site or depth of tuber inoculation with P. infestans did not influence tuber-to-sprout infection events and whether apical end or stem sprouts become infected. Tubers with late blight that survive the winter in western Washington and support sporulation of P. infestans via lenticels and eyes may enable the transmission of P. infestans from infected tissues to sprouts of volunteer plants. However, the impact of these events on primary inoculum production by P. infestans in the region is probably limited by the mild, winter conditions favoring tuber break-down in soil.

Keywords

Late blight Survival Volunteer potato tubers Lenticels Eyes 

Resumen

El crecimiento, esporulación y supervivencia de Phytophthora infestans, en tubérculos de papa que quedaron remanentes en campos de cultivo después de la cosecha, fueron investigados bajo diferentes temperaturas las cuales representaban las condiciones del suelo en invierno (4°C, 7°C y 10°C) y en primavera (13°C, 16°C, 19°C) para la región oeste del estado de Washington. Los tubérculos inoculados almacenados a 10°C por 8 días mostraron un porcentaje significativamente mayor (P < 0.05) de síntomas de la enfermedad en la superficie del tubérculo, así como un número más alto de lenticelas y yemas con esporulación de P. infestans comparado con aquellos tubérculos que fueron almacenados a 4°C o 7°C. La esporulación de P. infestans en la superficie de tubérculos cortados fue observada después de 3 semanas de almacenamiento a las tres temperaturas de suelo establecidas para invierno. Después de 12 semanas de almacenamiento, los tubérculos inoculados con el tipo US-8 tuvieron un porcentaje significativamente mayor de infección de tizón tardío en las superficies cortadas que aquellos inoculados con el tipo US-11 (70% vs. 50%, respectivamente). En los estudios de temperatura de suelo en primavera, los tubérculos inoculados con el tipo US-8 y mantenidos a 19°C tuvieron un número más alto de lenticelas por tubérculo con esporulación de P. infestans que los tubérculos mantenidos a 13°C o 16°C. Esporulación de P. infestans en la superficie de tubérculo fue detectada en tubérculos infectados y enterrados a 5-cm de profundidad del suelo de cultivo, esto ocurrió en todas las temperaturas evaluadas tanto de invierno y primavera después de periodos de 3 o 6 días, respectivamente. El sitio o la profundidad de la inoculación de P. infestans en los tubérculos no influyó en las chances de transferencia de infección de tubérculo a brotes, ni tampoco si los brotes apicales o de tallo fueron preferentemente infectados. Los tubérculos con tizón tardío que sobrevivieron el invierno en el oeste de Washington y permitieron esporulación a través de lenticelas y yemas, pueden permitir también la transmisión de P. infestans de tejidos infectados hacia los brotes de tubérculos remanentes en campos de cultivo. Sin embargo, el impacto de estos eventos en la producción de inóculos primarios de P. infestans en esta región esta probablemente limitado por las condiciones de invierno moderado que favorecerían mas bien la desintegración de los tubérculos en el suelo.

References

  1. Andrivon, D. 1994a. Dynamics of the survival and infectivity to potato tubers of sporangia of Phytophthtora infestans in three different soils. Soil Biology & Biochemistry 26: 945–952.CrossRefGoogle Scholar
  2. Andrivon, D. 1994b. Fate of Phytophthora infestans in a suppressive soil in relation to pH. Soil Biology & Biochemistry 26: 953–956.CrossRefGoogle Scholar
  3. Andrivon, D. 1995. Biology, ecology, and epidemiology of the potato late blight pathogen Phytophthora infestans in soil. Phytopathology 85: 1053–1056.CrossRefGoogle Scholar
  4. Askew, M.F. 1991. The bio-dynamics of volunteer potatoes. Proceedings of the Brighton Crop Protection Conference—Weeds, Brighton, UK. pp 219–223.Google Scholar
  5. Boydston, R., and M. Seymour. 1994. Volunteer potato control in rotational crops. Proceedings of the 33rd Annual Washington State Potato Conference and Trade Fair, Washington State Potato Commission, Moses, Lake, WA. pp 27–28.Google Scholar
  6. Cutter, E. 1978. Structure and development of the potato plant. In The potato crop, ed. P. Harris, 70–152. London: Chapman and Hall.Google Scholar
  7. De Bruyn, H.L.G. 1926. The overwintering of Phytophthora infestans (Mont.) de Bary. Phytopathology 16: 121–140.Google Scholar
  8. Derie, M.L., and D.A. Inglis. 2001. Persistence of complex virulences in populations of Phytophthora infestans in Western Washington. Phytopathology 91: 606–612.PubMedCrossRefGoogle Scholar
  9. Dorrance, A.E., and D.A. Inglis. 1998. Assessment of laboratory methods for resistance of potato tubers to late blight. Plant Disease 82: 442–446.CrossRefGoogle Scholar
  10. Dorrance, A.E., D.A. Inglis, M.L. Derie, C.R. Brown, S.B. Goodwin, W.E. Fry, and K.L. Deahl. 1999. Characterization of Phytophtora infestans populations in western Washington. Plant Disease 83: 423–428.CrossRefGoogle Scholar
  11. Dowley, L.J., and E. O’Sullivan. 1991. Sporulation of Phytophthora infestans (Mont.) de Bary on the surface of diseased tubers and tuber to tuber spread during handling. Potato Research 34: 295–296.CrossRefGoogle Scholar
  12. Erwin, D.C., and O.K. Ribeiro. 1996. Phytophthora diseases worldwide. 146–184. St. Paul: American Phytopathological Society.Google Scholar
  13. Evenhuis, A., G.J.T. Kessel, and P.J. Van Bekkum. 2006. Epidemiology of Phytophthora infestans in relation to tuber blight. Survival of P. infestans in field soils. PPO-Special Report No 11. pp 223–227.Google Scholar
  14. Goodwin, S.B., C.D. Smart, R.W. Sandrock, K.L. Deahl, Z.K. Punja, and W.E. Fry. 1998. Genetic change within populations of Phytophthora infestans in the United States and Canada 1994–1996: role of migration and recombination. Phytopathology 88: 939–949.PubMedCrossRefGoogle Scholar
  15. Inglis, D.A., M.L. Powelson, and A.E. Dorrance. 1999. Effect of registered potato seed piece fungicides on tuberborne Phytophthora infestans. Plant Disease 83: 229–234.CrossRefGoogle Scholar
  16. Inglis, D., M. Derie, B. Gundersen, E. Vestey, R. Ludy, and M. Powelson. 2000. Solanaceous hosts as sources of inoculum for late blight on potato in the Pacific Northwest. Phytopathology 91: S184.Google Scholar
  17. Kirk, W.W. 2003a. Tolerance of mycelium of different genotypes of Phytophthora infestans to freezing temperatures for extended periods. Phytopathology 93: 1400–1406.PubMedCrossRefGoogle Scholar
  18. Kirk, W.W. 2003b. Thermal properties of overwintered piles of cull potatoes. American Journal of Potato Research 80: 145–149.Google Scholar
  19. Kirk, W.W., B.A. Niemira, and J.M. Stein. 2001. Influence of storage temperature on rate of potato tuber tissue infection caused by Phytophthora infestans (Mont.) de Bary estimated by digital image analysis. Potato Research 44: 86–96.CrossRefGoogle Scholar
  20. Kromann, P., J.L. Andrade-Piedra, L. Munk, and G. Forbes. 2008. Preemergence infection of potato sprouts by Phytophthora infestans in the highland tropics of Ecuador. Plant Disease 92: 569–574.CrossRefGoogle Scholar
  21. Lacey, J. 1965. The infectivity of soils containing Phytophthora infestans. Annals of Applied Biology 59: 257–264.CrossRefGoogle Scholar
  22. Lambert, D.H., A.I. Currier, and M.O. Olanya. 1998. Transmission of Phytophthora infestans in cut potato seed. American Journal of Potato Research 75: 257–263.Google Scholar
  23. Lutman, P.J.W. 1974. Factors affecting the overwintering of volunteer potato tubers and the emergence of sprouts in the spring. Proceedings of the 12th British Weed Control Conference, Brighton, UK. pp 285–292.Google Scholar
  24. Marshall, K.D., and W.R. Stevenson. 1996. Transmission of Phytophthora infestans from infected seed potato tubers to developing sprouts. American Potato Journal 73: 370–371. (Abstr.).Google Scholar
  25. McMoran, D. 2006. Skagit County Agricultural Statistics. www.skagit.wsu.edu.
  26. Miller, J.S., and D. Johnson. 2000. Competitive fitness of Phytophthora infestans isolates under semi-arid conditions. Phytopathology 90: 220–224.PubMedCrossRefGoogle Scholar
  27. Montarry, R.C., and D. Andrivon. 2007. Is there a trade-off between aggressiveness and overwinter survival of Phytophthora infestans? Functional Ecology 21: 603–610.CrossRefGoogle Scholar
  28. Murphy, P. 1922. The bionomics of the conidia of Phytophthora infestans (Mont.) de Bary. Scientific Proceedings of the Royal Dublin Society 16: 442–466.Google Scholar
  29. Newberry, G. 2002. Integrated methods for suppression of volunteer potatoes (Solanum tuberosum) in Washington State. Ph.D. dissertation. Washington State University, Pullman, WA. pp 128.Google Scholar
  30. Oyarzun, P.J., C.D. Garzon, D. Leon, I. Andrade, and G.A. Forbes. 2005. Incidence of potato tuber blight in Ecuador. American Journal of Potato Research 82: 117–122.Google Scholar
  31. Partipilo, H. 1999. Seedbourne Phytophthora infestans: Effect of pathogen clonal tissue and potato cultivar on seed transmission of late blight and plant growth responses. Master’s thesis. Oregon State University. Corvallis, OR. pp 138.Google Scholar
  32. Peterson, L.C. 1947. The overwintering of Phytophthora infestans (Mont.) de Bary under Long Island conditions. American Potato Journal 24: 88–197.CrossRefGoogle Scholar
  33. Platt, H.W., R.D. Peters, M. Medina, and W. Arsenault. 1999. Impact of seed potatoes infected with Phytophthora infestans (US-1 or US-8 genotypes) on crop growth and disease risk. American Journal of Potato Research 75: 67–73.CrossRefGoogle Scholar
  34. Porter, L.D., and D.A. Johnson. 2007. Survival of sporangia of new clonal lineages of Phytophthora infestans in soil under semiarid conditions. Plant Disease 91: 835–841.CrossRefGoogle Scholar
  35. Powelson, M.L., R. Ludy, H. Partipilo, D. Inglis, B. Gundersen, and M. Derie. 2002. Seed borne late blight of potato. Plant Health Progress. doi:10.1094/PHP-2002-0129-01-HM.
  36. Sato, N. 1980. Sources of inoculum and sites of infection of potato tubers by Phytophthora infestans in soil. Annals of the Phytopathological Society of Japan 46: 231–240.Google Scholar
  37. Spence, R. 2002. Effects of soil temperature and moisture on the transmission of Phytophthora infestans from potato seed tubers to sprouts. Master’s thesis. Washington State University. Pullman, WA. pp 93.Google Scholar
  38. Van der Zaag, D.E. 1956. Overwintering en epidemiologie van Phytophthora infestans, tevens enige nieve bestrijdingsmogelijkheden. Tijdschrift Over Plantenziekien 62: 89–156.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2008

Authors and Affiliations

  1. 1.Washington State University-Mount Vernon Northwestern Washington Research & Extension CenterMount VernonUSA

Personalised recommendations