American Journal of Potato Research

, Volume 85, Issue 4, pp 277–285 | Cite as

Positioning the Potato as a Primary Food Source of Vitamin C

  • S. L. LoveEmail author
  • J. J. Pavek


Ascorbic acid, better known as vitamin C, is a crucial nutrient in the human diet. It performs many physiological functions in its primary roles as an electron donor and antioxidant. Vitamin C has been directly linked to collagen formation, iron absorption, cancer prevention, immunomodulation, and maintenance of normal nerve function. It is suspected to decrease the likelihood of strokes, cataracts, hypertension, and lead toxicity. Vitamin C deficiency leads to a condition called scurvy, accompanied by a weakening of blood vessels, bones and connective tissues, hair and tooth loss, joint swelling, and eventually death. Intake of vitamin C is considered inadequate, even among some parts of the population in developed countries where diet is not restricted, but more especially for at-risk populations in developing countries. Potatoes are an important worldwide source of vitamin C, contributing about 20% of the dietary intake in Europe. They are a vital source of vitamin C not only because of relatively high content, but because they can be stored, leading to consistent availability. Any improvement in the vitamin C content of potato products will have a beneficial impact on human nutrition. A three-pronged approach can be used to increase the vitamin C content of potatoes involving breeding, improved crop management, and modification of cooking processes. Breeding has tremendous potential for increasing vitamin C content in tubers as evidenced by research results in studies documenting germplasm variability and inheritance patterns. Management research may define practices that will slow the natural decline that occurs near the end of field growth and storage, a response partially conditioned by plant stress. Research into cooking procedures may help reduce the oxidative and enzymatic degradation of vitamin C that results from exposure to moisture, heat, and air.


Ascorbic acid Nutrition 


El ácido ascórbico, mejor conocido como vitamina C, es un nutriente imprescindible en la dieta humana. Realiza muchas funciones cuyo principal rol es como donante de electrones y antioxidante. La vitamina C ha sido directamente ligada a la formación de colágeno, absorción de hierro, prevención de cáncer, modulación inmunológica y mantenimiento de la función nerviosa. Parece que disminuye la posibilidad de ataques de apoplejía, cataratas, hipertensión y toxicidad por plomo. La deficiencia de vitamina C produce escorbuto, acompañado por un debilitamiento de las venas, huesos y tejido conectivo, pérdida de pelo y dientes, hinchazón de las articulaciones y eventualmente la muerte. El consumo de vitamina C es considerado inadecuado, aún entre parte de la población en los países en desarrollo. La papa es una importante fuente de vitamina C a nivel mundial que contribuye con un 20% del consumo dietético en Europa. Además es una fuente vital de vitamina C no solo por su alto contenido, sino porque puede ser almacenado, contribuyendo a una permanente disponibilidad. Cualquier mejora en el contenido de vitamina C de los productos de papa tiene un impacto benéfico en la nutrición humana. Se puede usar un enfoque de tres puntos para incrementar el contenido de vitamina C en la papa incluyendo el mejoramiento genético, manejo mejorado del cultivo y modificación del proceso de cocción. El proceso de mejoramiento genético tiene un gran potencial para incrementar el contenido de vitamina C en los tubérculos como ha sido evidenciado en resultados de investigación para documentar la variabilidad del germoplasma y patrones de herencia. La investigación sobre manejo puede definir las practicas que retardan el declive natural que ocurre cerca del final de crecimiento de la planta en el campo y el proceso de almacenaje, respuesta parcialmente acondicionada por el estrés de la planta. La investigación de los procedimientos de cocción pueden ayudar a reducir la degradación oxidativa y enzimática de la vitamina C que resulta de la exposición a la humedad, calor y aire.


  1. Arkoudilos, I.S., and D.E. Crean. 1978. Effect of reconditioning on the ascorbic acid content of potato cultivars. Research Circular 240: 46–48. Ohio Agricultural Research and Development Center, Wooster, Ohio.Google Scholar
  2. Artz, W.E., C.A. Pettibone, J. Augustin, and B.G. Swanson. 1983. Vitamin C retention of potato fries blanched in water. Journal of Food Science 48: 272–273.CrossRefGoogle Scholar
  3. Augustin, J. 1975. Variations in the nutritional composition of fresh potatoes. Journal of Food Science 40: 1259–1299.Google Scholar
  4. Augustin, J., S.R. Johnson, C. Teitzel, R.B. Toma, R.L. Shaw, R.H. True, J.M. Hogan, and R.M. Deutsch. 1978a. Vitamin composition of freshly harvested and stored potatoes. Journal of Food Science 43: 1566–1574.CrossRefGoogle Scholar
  5. Augustin, J., S.R. Johnson, C. Teitzel, R.H. True, J.M. Hogan, R.B. Toma, R.L. Shaw, and R.M. Deutsch. 1978b. Changes in nutrient composition of potatoes during home preparation: II. Vitamins. American Potato Journal 55: 653–662.CrossRefGoogle Scholar
  6. Augustin, J., B.G. Swanson, C. Teitzel, S.R. Johnson, S.F. Pometto, W.E. Artz, C.P. Huang, and C. Schomaker. 1979. Changes in nutrient composition during commercial processing of frozen potato products. Journal of Food Science 44: 807–809.CrossRefGoogle Scholar
  7. Barker, J., and L.W. Mapson. 1950. The ascorbic acid content of potato tubers II. The influence of temperature of storage. New Phytologist 49: 283–303.CrossRefGoogle Scholar
  8. Budd, G. 1840. Scurvy. In The Library of Medicine. Practical medicine, ed. A. Tweedie, 58–95. London: Whittaker.Google Scholar
  9. Chen, Z., and D.R. Gallie. 2006. Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiology 142: 775–787.PubMedCrossRefGoogle Scholar
  10. Chen, Z., T.E. Young, J. Ling, S. Chang, and D.R. Gallie. 2003. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America 100: 3525–3530.PubMedCrossRefGoogle Scholar
  11. Conklin, P.L., E.H. Williams, and R.L. Last. 1996. Environmental stress tolerance of an ascorbic acid-deficient Arabidopsis mutant. Proceedings of the National Academy of Sciences of the United States of America 93: 9970–9974.PubMedCrossRefGoogle Scholar
  12. Drummond, J.C. 1919. Note on the role of the antiscorbutic factor in nutrition. Biochemical Journal 13: 77–88.PubMedGoogle Scholar
  13. FAO. 2002. Vitamin C. Chapter 6 in: Human Nutrition and Mineral Requirements. Report of a joint FAO/WHO expert consultation, Bangkok, Thailand.Google Scholar
  14. Fillion, L., and C.J.K. Henry. 1998. Nutrient losses and gains during frying: a review. International Journal of Food Sciences and Nutrition 49: 157–168.PubMedCrossRefGoogle Scholar
  15. Foyer, C.H., N. Souriau, S. Perret, M. Lelandais, K.J. Kunert, C. Pruvost, and L. Jouanin. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increase in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109: 1047–1057.PubMedCrossRefGoogle Scholar
  16. Grace, S.C., and B.A. Logan. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broadleaved evergreen species. Plant Physiology 112: 1631–1640.PubMedGoogle Scholar
  17. Higdon, J. 2006. Vitamin C. Reviewed web document of the Linus Pauling Institute, Oregon State University, Corvallis, Oregon.
  18. Holst, A., and T. Frölich. 1907. Experimental studies relating to ship beri-beri and scurvy. II. On the etiology of scurvy. Journal of Hygiene 7: 634–671.CrossRefGoogle Scholar
  19. Hughes, R.E. 2000. Vitamin C. In The Cambridge world history of food, Vol 2, pp 754–762 eds. Kiple, K.F., K.C. Ornelas, Cambridge: Cambridge University Press.Google Scholar
  20. Hyde, R.B. 1962. Variety and location effects on ascorbic acid in potatoes. Journal of Food Science 27: 373–375.CrossRefGoogle Scholar
  21. Kemp, P., and T.C. Kemp. 1982. The ascorbic acid content of thirteen varieties of potato. Proceedings of the Nutrition Society 41: 6A.Google Scholar
  22. Kincal, N.S., and Ç. Gìray. 1987. Kinetics of ascorbic acid degradation in potato blanching. International Journal of Food Science & Technology 22: 249–254.Google Scholar
  23. Lampitt, L.H., L.C. Barker, and T.L. Parkinson. 1945. Vitamin C content of potatoes: the effect of variety, soil, and storage. Journal of the Society of Chemical Industry 64: 22–26.Google Scholar
  24. Linnemann, A.R., A. van Es, and K.J. Hartmans. 1985. Changes in the content of l-ascorbic acid, glucose, fructose, sucrose and total glycoalkaloids in potatoes (cv. Bintje) stored at 7, 16 and 28°C. Potato Research 28: 271–278.CrossRefGoogle Scholar
  25. Love, S.L., T. Salaiz, B. Shafii, W.J. Price, A.R. Mosley, and R.E. Thornton. 2004. Stability of expression and concentration of ascorbic acid in North American potato germplasm. HortScience 39: 156–160.Google Scholar
  26. Mondy, N.I., R.L. Koch, and S. Chandra. 1979. Influence of nitrogen fertilization on potato discolouration in relation to chemical composition. 2. Phenols and ascorbic acid. Journal of Agricultural and Food Chemistry 27: 418–420.CrossRefGoogle Scholar
  27. Mosure, J. 2004. Vitamin C (Ascorbic Acid). Ohio State University Fact Sheet No. HYG-5552-05. Columbus, Ohio.Google Scholar
  28. Mullin, W.J., P.Y. Jui, L. Nadeau, and T.G. Smyrl. 1991. The vitamin C content of seven cultivars of potatoes grown across Canada. Canadian Institute of Food Science and Technology Journal 24: 169–171.Google Scholar
  29. Murphy, E.F., and W.F. Dove. 1945. Observations on genetic, physiological, and environmental factors affecting the vitamin C content of Maine-grown potatoes. American Potato Journal 22: 62–83.CrossRefGoogle Scholar
  30. National Potato Council. 2001. Potato statistical yearbook. Greenwood Village, Colorado: National Potato Council.Google Scholar
  31. Okeyo, J.A., and M.M. Kushad. 1995. Composition of four potato cultivars in relation to cold storage and reconditioning. HortTechnology 5: 250–253.Google Scholar
  32. Pavek, J.J., and D.L. Corsini. 2004. Inheritance of vitamin C content in several 4x potato crosses. American Journal of Potato Research 81: 80.Google Scholar
  33. Pelletier, O., C. Nantel, R. Leduc, L. Tremblay, and R. Brassard. 1977. Vitamin C in potatoes prepared in various ways. Journal de I’ Institut Canadien de Technologie Alimentaire 10: 138–142.Google Scholar
  34. Pennington, J.A.T., and V.L. Wilkening. 1997. Final regulations for the nutrition labeling of raw fruits, vegetables, and fish. Journal of the American Dietetic Association 97: 1299–1305.PubMedCrossRefGoogle Scholar
  35. Perkins, L.B. 1993. Comparisons of sugars, glycoalkaloids, vitamin C, and organic acids in six potato cultivars from tuber formation throughout storage. Master's Thesis, University of Maine, Orono, Maine.Google Scholar
  36. Shekhar, V.C., W.M. Iritani, and R. Arteca. 1978. Changes in ascorbic acid content during growth and short-term storage of potato tubers (Solanum tuberosum L.). American Potato Journal 55: 663–670.CrossRefGoogle Scholar
  37. Smirnoff, N. 1996. The function and metabolism of ascorbic acid in plants. Annals of Botany 78: 661–669.CrossRefGoogle Scholar
  38. Smirnoff, N., and G.L. Wheeler. 2000. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Plant Sciences 19: 267–290.CrossRefGoogle Scholar
  39. Storey, R.M.J., and H.V. Davis. 1992. Tuber quality. In The potato crop: the scientific basis for improvement, ed. P.M. Harris, 507–568. London: Chapman and Hall.Google Scholar
  40. Sumner, J.L., S.L. Eu, and A.S. Dhillon. 1983. Ascorbic acid retention in foods. Journal of Food and Nutrition 40: 43–47.Google Scholar
  41. Thiessen, E.J. 1936. Effect of storage upon the vitamin C content of Wyoming potatoes. Wyoming Agric. Exp. Sta. Bull. No. 213.Google Scholar
  42. Wang, X.Y., M.G. Kozempel, K.B. Hicks, and P.A. Seib. 1992. Vitamin C stability during preparation and storage of potato flakes and reconstituted mashed potatoes. Journal of Food Science 57: 1136–1139.CrossRefGoogle Scholar
  43. Watt, B.K., and A.L. Merrill. 1963. Composition of foods. Agric. Handbook No. 8. U.S. Department of Agriculture.Google Scholar
  44. Yoshida, S., M. Tamaoki, T. Shikano, N. Nakajima, D. Ogawa, M. Ioki, M. Aono, A. Kubo, H. Kamada, Y. Inoue, and H. Saji. 2006. Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant and Cell Physiology 47: 304–308.PubMedCrossRefGoogle Scholar
  45. Zhang, L., G.A. Porter, and R.J. Bushway. 1997. Ascorbic acid and glycoalkaloid content of Atlantic and Superior potato tubers as affected by supplemental irrigation and soil amendments. American Potato Journal 74: 285–304.CrossRefGoogle Scholar

Copyright information

© Potato Association of America 2008

Authors and Affiliations

  1. 1.Aberdeen R & E CenterUniversity of IdahoAberdeenUSA
  2. 2.Aberdeen R & E CenterUSDA/ARSAberdeenUSA

Personalised recommendations