American Journal of Potato Research

, Volume 85, Issue 3, pp 219–226

Structure of Two Solanum bulbocastanum Polyubiquitin Genes and Expression of Their Promoters in Transgenic Potatoes

  • David R. Rockhold
  • Sophie Chang
  • Nathan Taylor
  • Paul V. Allen
  • Kent F. McCue
  • William R. Belknap


Two polyubiquitin genes, bul409 and bul427, were isolated from a Solanum bulbocastanum BAC library. The bul409 and bul427 genes encode hexameric and heptameric polyproteins, respectively. bul427 exhibits a number of features suggestive of a pseudogene: (1) The last ubiquitin monomer of bul427 is interrupted by a frame shift mutation. (2) The coding sequence is flanked 3′ by mitochondrial and chloroplast sequences and 5′ by a protein kinase pseudogene. However, characterization of cDNAs amplified using bul427-based primers demonstrated that bul427 is transcriptionally active. Chimeric transgenes encoding β-glucuronidase (GUS) translationally fused to the first ubiquitin-coding units of bul409, a truncated version 409s, and bul427 were constructed and introduced into potato. In transgenic potato lines both S. bulbocastanum promoters were weakly transcribed in tubers and efficiently transcribed in leaves. In leaves, bul409s was wound-induced, while bul427 was not. In tubers both promoters were wound-induced. In unwounded leaves and tubers, the steady state mRNA levels from both bul promoters were lower than the steady state mRNA levels from the Cauliflower Mosaic Virus 35S promoter. However, in the leaves and tubers of many of the transgenic lines the GUS activity was significantly higher in the bul lines compared to the 35S lines. The apparent inconsistency of higher enzymatic activity correlated with lower steady state levels of mRNA demonstrates the enhanced protein expression observed with ubiquitin fusion proteins.


β-glucuronidase Intron Leaf Tuber Wound-induced 



E. coli β-glucuronidase


bacterial artificial chromosome


untranslated region


Dos genes de poliubiquitina, bul409 y bul427, fueron aislados de una librería BAC de Solanum bulbocastanum. Los genes bul409 y bul427 codifican poliproteínas hexámera y heptámera, respectivamente. El bul427 exhibe varios rasgos que sugieren un seudo gen: (1) El último monómero de bul427 es interrumpido por una mutación con desplazamiento de la pauta de lectura. (2) La secuencia codificante es flanqueada en 3′ por secuencias mitocondriales y de cloroplastos y en 5′ por un seudogen de proteína quinasa. Sin embargo, la caracterización de cDNAs amplificadas usando iniciadores basados en bul427 demostró que bul427 es transcripcionalmente activo. Se construyeron e introdujeron en papa transgenes quiméricos que codifican β-glucuronidasa (GUS) translacionalmente fusionados a las primeras unidades que codifican ubiquitina de bul409, una versión truncada de 409s y bul427. En las líneas de papa transgénica de S. bulbocastanum, los promotores fueron débilmente transcritos en los tubérculos y eficientemente transcritos en hojas. En hojas el bul409s fue inducido por heridas, mientras que bul427 no fue. En tubérculos, ambos promotores fueron inducidos por heridas. En hojas y tubérculos sin herir, los niveles mRNA en estado de equilibrio para ambos promotores bul fueron más bajos que los niveles de mRNA en estado de equilibrio del promotor 35S del virus del Mosaico de la Coliflor. Sin embargo, en hojas y tubérculos de muchas líneas transgénicas, la actividad de GUS fue significativamente más alta en las líneas bul en comparación con las 35S. La aparente inconsistencia de una actividad enzimática mayor, correlacionada con bajos niveles de mRNA en estado de equilibrio demuestra el incremento de la expresión de proteína observada con proteínas fusión ubiquitina.


  1. Akeley, R.V., W.R. Mills, C.E. Cunningham, and J. Watts. 1968. Lenape: a new potato variety high in solids and chipping quality. American Potato Journal 45: 142–151.CrossRefGoogle Scholar
  2. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.PubMedGoogle Scholar
  3. Atkinson, H.J., S. Grimwood, K. Johnston, and J. Green. 2004. Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Research 13: 135–142.PubMedCrossRefGoogle Scholar
  4. Balakirev, E.S., and F.J. Ayala. 2003. Pseudogenes: are they “junk” or functional DNA? Annual Review of Genetics 37: 123–151.PubMedCrossRefGoogle Scholar
  5. Binet, M.N., A. Steinmetz, and L.H. Tessier. 1989. The primary structure of sunflower (Helianthus annuus) ubiquitin. Nucleic Acids Research 17: 2119.PubMedCrossRefGoogle Scholar
  6. Binet, M.N., J.H. Weil, and L.H. Tessier. 1991. Structure and expression of sunflower ubiquitin genes. Plant Molecular Biology 17: 395–407.PubMedCrossRefGoogle Scholar
  7. Burke, T.J., J. Callis, and R.D. Vierstra. 1988. Characterization of a polyubiquitin gene from Arabidopsis thaliana. Molecular Gen Genetics 213: 435–443.CrossRefGoogle Scholar
  8. Chen, T.L., Y.L. Lin, Y.L. Lee, N.S. Yang, and M.T. Chan. 2004. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Research 13: 499–510.PubMedCrossRefGoogle Scholar
  9. Christensen, A.H., and P.H. Quail. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research 5: 213–218.PubMedCrossRefGoogle Scholar
  10. Fujino, K., H. Sekiguchi, and T. Kiguchi. 2005. Identification of an active transposon in intact rice plants. Molecular Genetics & Genomics 273: 150–157.CrossRefGoogle Scholar
  11. Garbarino, J.E., and W.R. Belknap. 1994. Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Molecular Biology 24: 119–127.PubMedCrossRefGoogle Scholar
  12. Garbarino, J.E., D.R. Rockhold, and W.R. Belknap. 1992. Expression of stress-responsive ubiquitin genes in potato tubers. Plant Molecular Biology 20: 235–244.PubMedCrossRefGoogle Scholar
  13. Garbarino, J.E., T. Oosumi, and W.R. Belknap. 1995. Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiology 109: 1371–1378.PubMedCrossRefGoogle Scholar
  14. Hondred, D., J.M. Walker, D.E. Mathews, and R.D. Vierstra. 1999. Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiology 119: 713–724.PubMedCrossRefGoogle Scholar
  15. Jefferson, R.A., S.M. Burgess, and D. Hirsh. 1986. b-Glucuronidase from Escherichia coli as a gene-fusion marker. Proceedings of the National Academy of Sciences of the United States of America 83: 8447–8451.PubMedCrossRefGoogle Scholar
  16. Jefferson, R.A., T.A. Kavanagh, and M.W. Bevan. 1987. GUS Fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901–3907.PubMedGoogle Scholar
  17. Joung, Y.H., and K. Kamo. 2006. Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Reports 25: 1081–1088.PubMedCrossRefGoogle Scholar
  18. Kang, T.J., B.G. Kim, J.Y. Yang, and M.S. Yang. 2006. Expression of a synthetic cholera toxin B subunit in tobacco using ubiquitin promoter and bar gene as a selectable marker. Molecular Biotechnology 32: 93–100.PubMedCrossRefGoogle Scholar
  19. Kay, R., A. Chan, M. Daly, and J. McPherson. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302.PubMedCrossRefGoogle Scholar
  20. McCue, K.F., P.V. Allen, L.V. Shepherd, A. Blake, J. Whitworth, M.M. Maccree, D.R. Rockhold, D. Stewart, H.V. Davies, and W.R. Belknap. 2006. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67: 1590–1597.PubMedCrossRefGoogle Scholar
  21. Ozkaynak, E., D. Finley, M.J. Solomon, and A. Varshavsky. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO Journal 6: 1429–1439.PubMedGoogle Scholar
  22. Panahi, M., Z. Alli, X. Cheng, L. Belbaraka, J. Belgoudi, R. Sardana, J. Phipps, and I. Altosaar. 2004. Recombinant protein expression plasmids optimized for industrial E. coli fermentation and plant systems produce biologically active human insulin-like growth factor-1 in transgenic rice and tobacco plants. Transgenic Research 13: 245–259.PubMedCrossRefGoogle Scholar
  23. Plesse, B., M.C. Criqui, A. Durr, Y. Parmentier, J. Fleck, and P. Genschik. 2001. Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Molecular Biology 45: 655–667.PubMedCrossRefGoogle Scholar
  24. Pustell, J., and F.C. Kafatos. 1982. A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10: 4765–4782.PubMedCrossRefGoogle Scholar
  25. Ramesh, S.A., S. Choimes, and D.P. Schachtman. 2004. Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Molecular Biology 54: 373–385.PubMedCrossRefGoogle Scholar
  26. Rollfinke, I.K., M.V. Silber, and U.M. Pfitzner. 1998. Characterization and expression of a heptaubiquitin gene from tomato. Gene 211: 267–276.PubMedCrossRefGoogle Scholar
  27. Rommens, C.M., J.M. Humara, J. Ye, H. Yan, C. Richael, L. Zhang, R. Perry, and K. Swords. 2004. Crop improvement through modification of the plant’s own genome. Plant Physiology 135: 421–431.PubMedCrossRefGoogle Scholar
  28. Schultheiss, H., G. Hensel, J. Imani, S. Broeders, U. Sonnewald, K.H. Kogel, J. Kumlehn, and R. Huckelhoven. 2005. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiology 139: 353–362.PubMedCrossRefGoogle Scholar
  29. Sivamani, E., and R. Qu. 2006. Expression enhancement of a rice polyubiquitin gene promoter. Plant Molecular Biology 60: 225–239.PubMedCrossRefGoogle Scholar
  30. Smalle, J., and R.D. Vierstra. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology 55: 555–590.PubMedCrossRefGoogle Scholar
  31. Snyder, G.W., and W.R. Belknap. 1993. A modified method for routine Agrobacterium-mediated transformation of in vitro grown potato microtubers. Plant Cell Reports 12: 324–327.CrossRefGoogle Scholar
  32. Song, J., F. Dong, and J. Jiang. 2000. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome 43: 199–204.PubMedCrossRefGoogle Scholar
  33. Tiimonen, H., T. Aronen, T. Laakso, P. Saranpaa, V. Chiang, T. Ylioja, H. Roininen, and H. Haggman. 2005. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222: 699–708.PubMedCrossRefGoogle Scholar
  34. Verwoerd, T.C., B.M.M. Dekker, and A. Hoekema. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Research 17: 2362.PubMedCrossRefGoogle Scholar
  35. Wang, J., J. Jiang, and J.H. Oard. 2000. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). Plant Science 156: 201–211.CrossRefGoogle Scholar
  36. Yang, Z.Q., Q.Q. Liu, Z.M. Pan, H.X. Yu, and X.A. Jiao. 2007. Expression of the fusion glycoprotein of Newcastle disease virus in transgenic rice and its immunogenicity in mice. Vaccine 25: 591–598.PubMedCrossRefGoogle Scholar

Copyright information

© Potato Association of America 2008

Authors and Affiliations

  • David R. Rockhold
    • 1
  • Sophie Chang
    • 1
  • Nathan Taylor
    • 1
  • Paul V. Allen
    • 1
  • Kent F. McCue
    • 1
  • William R. Belknap
    • 1
  1. 1.United States Department of Agriculture, Agricultural Research ServiceWestern Regional Research CenterAlbanyUSA

Personalised recommendations