Advertisement

What we Know about the Composition and Structure of Igapó Forests in the Amazon Basin

  • Randall W. Myster
Article
  • 17 Downloads

Abstract

The Amazon contains some of the most critical ecosystems on earth and Igapó forests are one of those ecosystems. They are flooded by “black-water”, leached runoff of forest litter. To help in our understanding of igapó forests, and to act as a resource for their future research, I review what we know about their composition and structure. I used my own sampling data to construct floristics tables of the tree species, and tables of physical structural parameters such as tree density, species richness basal area and above-ground biomass (AGB). In addition I used data gotten from literature searches on google scholar, biosys, WorldCat discovery services and other databases for all papers that sampled trees in plots within igapó forests. I found there was a total of 59 families sampled in all the plots. The families with the most genera were Fabaceae and Caesalpiniaceae, with the most species were Fabaceae and Euphorbiaceae, and with the most tree stems were Fabaceae and Euphorbiaceae. The most common genera were Mouriri and Lincania and the most common species were Virola elongate and Swartzia polyphylla. For structure, total stems had a wide range between 167 and 683 per ha, stem sizes generally conformed to a “reverse J” distribution pattern, mean stem sizes were ~20 cm diameter at breast height, there was a species richness range between 90 and 119 per ha, and igapó forests were more open than other forest-types in the Amazon basin. While these plots were in primary igapó forest, my samplings of secondary igapó forests showed they had a reduced structure compared to primary igapó forests but were similar within the different kinds of secondary igapó forests.

Keywords

Basal area Above-ground biomass Stem size Density Species richness Fishers α 

Resumen

El Amazonas contiene algunos de los ecosistemas más críticos de la tierra y los bosques de Igapó son uno de esos ecosistemas. Están inundados por “aguas negras”, escorrentías lixiviadas de la basura forestal. Para ayudar en nuestra comprensión de los bosques de igapó, y para actuar como un recurso para su futura investigación, repaso lo que sabemos sobre su composición y estructura. Utilicé mis propios datos de muestreo para construir tablas florísticas de las especies arbóreas y tablas de parámetros estructurales físicos tales como la densidad del árbol, el área basal de la riqueza de especies y la biomasa aérea (AGB). Además, utilicé datos obtenidos de búsquedas bibliográficas en Google scholar, biosys, servicios de descubrimiento WorldCat y otras bases de datos para todos los documentos que muestreaban árboles en parcelas dentro de los bosques de igapó. Encontré que había un total de 59 familias muestreadas en todas las parcelas. Las familias con más géneros fueron Fabaceae y Caesalpiniaceae, con la mayoría de las especies Fabaceae y Euphorbiaceae, y con la mayoría de los tallos de los árboles Fabaceae y Euphorbiaceae. Los géneros más comunes fueron Mouriri y Lincania y las especies más comunes fueron Virola alargada y Swartzia polyphylla. Para la estructura, los tallos totales tenían un amplio rango entre 167 y 683 por hectárea, los tamaños del tallo generalmente se ajustaban a un patrón de distribución “inversa J”, los tamaños medios del tallo eran ~ 20 cm de diámetro a la altura del pecho, existía un rango de riqueza entre 90 y 119 por hectárea y los bosques de igapó fueron más abiertos que otros tipos de bosques en la cuenca del Amazonas. Si bien estas parcelas estaban en el bosque de igapó primario, mis muestreos de bosques de igapó secundarios mostraron que tenían una estructura reducida en comparación con los bosques primarios de igapó, pero eran similares dentro de los diferentes tipos de bosques secundarios de igapó.

Notes

Acknowledgements

I thank F. Wittmann for commenting on a past draft of the manuscript.

Literature Cited

  1. Ayres, J.M.C. 1993. As matas de varzea do Mamiraua. MCT-CNPq-Programa do tropic umido, Sociedade civil de Mamiraua, Brasil.Google Scholar
  2. Brokaw, N.V.L. 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 11:158–160.CrossRefGoogle Scholar
  3. Buchholz, T., Tennigkeit, T. & A. Weinreich. 2004. Maesopsis eminii – a challenging timber tree species in Uganda – a production model for commercial forestry and smallholders. Proceedings of the international union of forestry research organizations (IUFRO) conference on the economics and management of high productivity plantations, Lugo, Spain.Google Scholar
  4. Campbell, D.G., Daly, D.C., Prance, G.T. & U. N. Maciel. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio-Xingú, Brazilian Amazon. Brittonia 38:369–393.CrossRefGoogle Scholar
  5. Campbell, D., Stone, J. & A. Rosas. 1992. A comparison of the phytosociology and dynamics of three floodplain (Varzea) forests of known ages, Rio Jururi, western Brazilian Amazon. Bot. J. Linnaus Soc. 108:213–237.CrossRefGoogle Scholar
  6. Choo, J.P.S., Martinez, R.V. & E. W. Stiles. 2007. Diversity and abundance of plants with flowers and fruits from October 2001 to September 2002 in Paucarillo reserve, northeastern Amazon. Peru Revisita Peru Biology 14:25–31.Google Scholar
  7. Daly, D.G. & G. T. Prance. 1989. Brazillian Amazon. Pp 401–426 in D. G. Campbell, & H. D. Hammond (eds), Floristic inventory of tropical countries. New York Botanical Garden, Bronx.Google Scholar
  8. Ferreira, L.V. 1991. Oefeito do period de inundacao, na distribuicao, fenologia e regeneracao de plantas emuma floresta de igapo na Amazonia Central. Ms thesis. Instituto Nacional de Pesquisas da Amazonia, INPA, Brasil.Google Scholar
  9. Ferreira, L.V. 1997. Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jau National Park in floodplain forests in Central Amazonia. Biodiversity and Conservation 6:1353–1363.CrossRefGoogle Scholar
  10. Ferreira, L.V. 2000. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian Blackwater floodplain forests: Implications for future design of protected areas. Biodiversity and Conservation 9:1–14.CrossRefGoogle Scholar
  11. Ferreira, L.V. & S.S. Almeida. 2005. Relationship between flooding level, plant species diversity and tree fall gap size in a seasonally flooded forest in Central Amazonia, Brazil. Review Arvore 29:445–453CrossRefGoogle Scholar
  12. Ferreira, L.V. & G. T. Prance. 1998. Species richness and floristic composition in four hectares in the Jau national park in upland forest in Central Amazonia. Biodiversity and Conservation 7:1349–1361.CrossRefGoogle Scholar
  13. Ferreira, L.V., Almeida, S.S., Amara, D.D. & P. Parolin. 2005. Riqueza e composicao de species da floresta de igapo e varzea da estacao cientifica ferreira penna: subsidies para o plano de manejo da floresta nacional de caxiuana. Pesquisas, Botanica 56: 103–116.Google Scholar
  14. Frederickson, M.E., Greene, M.J. & D. M. Gordon. 2005. ‘Devil’s garden’ bedeviled by ants. Nature 437:495–496.CrossRefPubMedGoogle Scholar
  15. Gentry, A.H. 1993. A field guide to the families and genera of woody plants of Northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa. Washington, D.C.: Conservation InternationalGoogle Scholar
  16. Haugaasen, T. & C. A. Peres. 2006. Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purus region of Central Amazonia, Brazil. Acta Amazonica 36:25–36.CrossRefGoogle Scholar
  17. Honorio, E.N. 2006. Floristic relationships of the tree flora of Jenaro Herrera, an unusual area of the Peruvian Amazon. M.S. thesis, University of Edinburgh, Edinburgh, UK.Google Scholar
  18. Inuma, J.J. 2006. Comparacao na diversidade e estrutura das comunidades de plantas lenhosas da terra firme, varzea e igapo do Amana, Amazonia Central. PhD thesis. Instotuto Nacional de Pesquisas da.Google Scholar
  19. Junk, W.J. 1984. Ecology of the Varzea, floodplains of Amazonian white-water rivers. Pp. 215–243 in Junk, W.J. (ed.) The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Kluwer, Dordrecht.CrossRefGoogle Scholar
  20. Junk, W.J. 1989. Flood tolerance and tree distribution in central Amazonian floodplains. Pp. 47–64 in Holm-Nielsen, L.B., Nielsen, I.C. & Balslev, H. (eds), Tropical forests: Botanical dynamics, speciation and diversity. Academic, New York.CrossRefGoogle Scholar
  21. Junk, W.J. 1997. The Central Amazon floodplain: Ecology of a pulsing system. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  22. Junk, W.J., Ohly, J.J., Piedade, M.T.F. & M. G. M. Soares. 2000. The Central Amazon floodplain: Actual use and options for a sustainable management. Backhuys Publishers, Leiden.Google Scholar
  23. Junk, W.J., Piedade, M.T.F, Parolin, P., Wittman, F. & J. Schongart. 2010. Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management. Ecological studies, Springer-Verlag, Berlin.Google Scholar
  24. Junk, W.J., Piedade, M.T.F., Schongart, J., Cohn-Haft, M., Adency, J. M. & F. Wittmann. 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands  https://doi.org/10.1007/s13157-011-0190-7
  25. Kalliola, R.S., Jukka, M., Puhakka, M. & M. Rajasilta. 1991. New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. J. Ecol. 79:877–901.CrossRefGoogle Scholar
  26. Ludwig, J.A. & J. F. Reynolds. 1988. Statistical ecology. New York: Wiley.Google Scholar
  27. Montero, J.C. & E. M. Latrubesse. 2013. The igapó of the negro river in Central Amazonia: Linking late-successional inundation forest with fluvial geo morphology. J. Soil Am. Earth Sci. 46:137–149.CrossRefGoogle Scholar
  28. Montero, J.C., Teresa, M., Piedade, F. & F. Wittmann. 2012. Floristic variation across 600 km of inundation forests (igapó) along the Negro River, Central Amazonia. Hydrobiologia  https://doi.org/10.1007/s10750-012-1381-9.
  29. Moreau, C.S. 2008. Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). Moleular Physiology Evolution 48:224–239.CrossRefGoogle Scholar
  30. Myster, R.W. 2007a. Interactive effects of flooding and forest gap formation on composition and abundance in the Peruvian Amazon. Folia Geobotanica 42:1–9.CrossRefGoogle Scholar
  31. Myster, R.W. 2007b. Post-agricultural succession in the Neotropics. Springer –Verlag, Berlin.Google Scholar
  32. Myster, R.W. 2009. Plant communities of western Amazonia. Bot. Rev. 75:271–291.CrossRefGoogle Scholar
  33. Myster, R.W. 2010. Flooding duration and treefall interactive effects on plant community richness, structure and alpha diversity in the Peruvian Amazon. Ecotropica 16:43–49.Google Scholar
  34. Myster, R.W. 2013. The effects of flooding on forest floristics and physical structure in the Amazon: Results from two permanent plots. Forest research 2:112. https://doi.org/10.4172/2168-9776.1000112.CrossRefGoogle Scholar
  35. Myster, R.W. 2015a. Varzea forest vs. terra firme forest floristics and physical structure in the Ecuadorean Amazon. Ecotropica 20:35–44.Google Scholar
  36. Myster, R.W. 2015b. Flooding x tree fall gap interactive effects on black-water forest floristics and physical structure in the Peruvian Amazon. J. Plant Inter. 10:126–131.Google Scholar
  37. Myster, R.W. 2016a. Black-water forests (igapó) vs. white-water forests (várzea) in the Amazon: Floristics and physical structure. The Biologist (Lima) 13:391–406.Google Scholar
  38. Myster, R.W. 2016b. The physical structure of Amazon forests: A review. Bot. Rev. 82:407–427.CrossRefGoogle Scholar
  39. Myster, R.W. 2017. Forest structure, function and dynamics in western Amazonia. Wiley & sons, Oxford, UK.CrossRefGoogle Scholar
  40. Myster, R. W. in press. Igapó (black-water flooded forests) of the Amazon Basin. Springer-Verlag, Berlin.Google Scholar
  41. Myster, R.W. & N. Fetcher. 2005. Ecotypic differentiation and plant growth in the Luquillo Mountains of Puerto Rico. J. Trop. For. Sci. 17:163–169.Google Scholar
  42. Myster, R.W. & S. T. A. Pickett. 1992. Effects of palatability and dispersal mode on spatial patterns of tree seedlings in old fields. Bull. Torrey Bot. Club 119:145–151.CrossRefGoogle Scholar
  43. Nascimento, H.E.M. & W. F. Lawrance. 2002. Total aboveground biomass in central Amazonian rainforest: A landscape-scale study. Forest Ecol Manag 68:311–321.CrossRefGoogle Scholar
  44. Parolin, P., Adis, J., Rodrigues, W.A., Amaral, I. & M. T. F. Piedade. 2004. Floristic study of an igapó floodplain forest in Central Amazonia, Brazil (Taruma-Mirim, Rio Negro). Amazoniana 18:29–47.Google Scholar
  45. Pinedo-Vasquez, M., Ruffino, M.L., Padoch, C. & E. S. Brondizio. 2011. The Amazon Varzea: The decade past and the decade ahead. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  46. Prance, G.T. 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38.CrossRefGoogle Scholar
  47. Romoleroux, K., Foster, R., Valencia, R., Condit, R., Balslev, H. & E. Losos. 1997. Especies lenosas (dap => 1 cm) encontradas en dos hectareas de un bosque de la Amazonia ecuatoriana. Pp 189–215 in Valencia, R. & H. Balslev (eds) Estudios Sobre Diversidad y Ecologia de Plantas. Pontificia Universidad Catolica del Ecuador, Quito, Ecuador.Google Scholar
  48. Targhetta, N., Kesselmeier, J. & F. Wittmann. 2015. Effects of hydroedaphic gradient on tree species composition and above-ground wood biomass of oligotrophic forest ecosystems in the Central Amazon basin. Folia Geobotabica  https://doi.org/10.1007/s12224-015-9225-9
  49. Tukey, H.B. 1970. The leaching of substances from plants. Ann. Rev. Plant Phys. 21: 305–324.CrossRefGoogle Scholar
  50. Wittmann, F., Junk, W.J. & J. Schongart. 2010. Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forest. In: Junk WJ, Piedade MT F, Parolin P, Wittman F, Schongart J (eds). Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management. Ecological studies, Springer-Verlag, Berlin.Google Scholar

Copyright information

© The New York Botanical Garden 2018

Authors and Affiliations

  1. 1.Biology DepartmentOklahoma State UniversityOklahoma CityUSA

Personalised recommendations