The Botanical Review

, Volume 85, Issue 1, pp 1–39 | Cite as

Phylogeny and Systematics of Cyperaceae, the Evolution and Importance of Embryo Morphology

  • Ilias Semmouri
  • Kenneth Bauters
  • Étienne Léveillé-Bourret
  • Julian R. Starr
  • Paul Goetghebeur
  • Isabel LarridonEmail author


Despite recent advances in molecular phylogenetic studies, deep evolutionary relationships in Cyperaceae are still not entirely resolved. Reduction of floral morphology and complex inflorescences pose difficulties to unravel relationships based on morphology alone. One of the most phylogenetically informative structures in Cyperaceae are the embryos. The utility of embryo characters and types in Cyperaceae systematics is reviewed in a molecular phylogenetic context using a DNA supermatrix incorporating sequences from five plastid (matK, ndhF, rbcL, rps16, trnL-F) and two nuclear ribosomal (ETS, ITS) regions. The phylogenetic hypothesis presented includes the most extensive sampling of the family to date. Fourteen qualitative morphological embryo characters were coded, ancestral state reconstructions were performed, and the embryo of each sampled genus was classified in a typological system based on key morphological features. Embryo morphology provides a valuable source of independent data for Cyperaceae systematics that can be used to place species with unknown affinities, when molecular data is not available, or when results of analyses are inconclusive or conflicting. Integrating embryo data will remain critical for future higher level studies of Cyperaceae evolution and classification.


Ancestral state reconstruction Cyperaceae Embryo Evolution Molecular phylogenetics Systematics 



This study was funded by the Ghent University Department of Biology and an NSERC Discovery Grant to JRS. We thank the curators of the BR, K, GENT and L herbaria for the loan of specimens and permission to carry out destructive sampling.

Supplementary material

12229_2018_9202_MOESM1_ESM.docx (159 kb)
ESM 1 (DOCX 159 kb)
12229_2018_9202_MOESM2_ESM.tif (1.9 mb)
ESM 2 (TIF 1939 kb)
12229_2018_9202_Fig5_ESM.png (1.5 mb)

High resolution image (PNG 1576 kb)

12229_2018_9202_MOESM3_ESM.tif (1.9 mb)
ESM 3 (TIF 1975 kb)
12229_2018_9202_Fig6_ESM.png (1.6 mb)

High resolution image (PNG 1602 kb)

12229_2018_9202_MOESM4_ESM.tif (7.5 mb)
ESM 4 (TIF 7691 kb)
12229_2018_9202_Fig7_ESM.png (1.8 mb)

High resolution image (PNG 1816 kb)

12229_2018_9202_MOESM5_ESM.tif (1.9 mb)
ESM 5 (TIF 1979 kb)
12229_2018_9202_Fig8_ESM.png (1.6 mb)

High resolution image (PNG 1632 kb)

12229_2018_9202_MOESM6_ESM.tif (1.9 mb)
ESM 6 (TIF 1992 kb)
12229_2018_9202_Fig9_ESM.png (1.6 mb)

High resolution image (PNG 1607 kb)

12229_2018_9202_MOESM7_ESM.tif (1.9 mb)
ESM 7 (TIF 1944 kb)
12229_2018_9202_Fig10_ESM.png (1.5 mb)

High resolution image (PNG 1570 kb)

12229_2018_9202_MOESM8_ESM.tif (1.9 mb)
ESM 8 (TIF 1944 kb)
12229_2018_9202_Fig11_ESM.png (1.5 mb)

High resolution image (PNG 1570 kb)

12229_2018_9202_MOESM9_ESM.tif (1.9 mb)
ESM 9 (TIF 1943 kb)
12229_2018_9202_Fig12_ESM.png (1.5 mb)

High resolution image (PNG 1570 kb)

12229_2018_9202_MOESM10_ESM.tif (1.9 mb)
ESM 10 (TIF 1967 kb)
12229_2018_9202_Fig13_ESM.png (1.6 mb)

High resolution image (PNG 1593 kb)

12229_2018_9202_MOESM11_ESM.tif (1.9 mb)
ESM 11 (TIF 1974 kb)
12229_2018_9202_Fig14_ESM.png (1.6 mb)

High resolution image (PNG 1615 kb)

12229_2018_9202_MOESM12_ESM.tif (1.9 mb)
ESM 12 (TIF 1966 kb)
12229_2018_9202_Fig15_ESM.png (1.6 mb)

High resolution image (PNG 1588 kb)

12229_2018_9202_MOESM13_ESM.tif (1.9 mb)
ESM 13 (TIF 1958 kb)
12229_2018_9202_Fig16_ESM.png (1.5 mb)

High resolution image (PNG 1585 kb)

12229_2018_9202_MOESM14_ESM.tif (2 mb)
ESM 14 (TIF 1998 kb)
12229_2018_9202_Fig17_ESM.png (1.6 mb)

High resolution image (PNG 1605 kb)

12229_2018_9202_MOESM15_ESM.tif (1.9 mb)
ESM 15 (TIF 1957 kb)
12229_2018_9202_Fig18_ESM.png (1.6 mb)

High resolution image (PNG 1591 kb)

Literature Cited

  1. Bauters, K., P. Asselman, D. A. Simpson, A. M. Muasya, P. Goetghebeur & I. Larridon 2016. Phylogenetics, ancestral state reconstruction, and a new infrageneric classification of Scleria (Cyperaceae) based on three DNA markers. Taxon, 65(3), 444–466.Google Scholar
  2. Bauters, K., I. Larridon, M. Reynders, P. Asselman, A. Vrijdaghs, A. M. Muasya, D. A. Simpson & P. Goetghebeur 2014. A new classification for Lipocarpha and Volkiella as infrageneric taxa of Cyperus s.l. (Cypereae, Cyperoideae, Cyperaceae): Insights from species tree reconstruction supplemented with morphological and floral developmental data. Phytotaxa, 166, 1–32.Google Scholar
  3. Blattner, F. R. 1999. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27(6): 1180-1185.Google Scholar
  4. Bouchenak-Khelladi, Y., A. M. Muasya & H. P. Linder 2014. A revised evolutionary history of Poales: origins and diversification. Botanical Journal of the Linnean Society, 175, 4–16.Google Scholar
  5. Bruhl, J. J. 1995. Sedge genera of the world: relationships and a new classification of the Cyperaceae. Australian Systematic Botany, 8, 125–305.Google Scholar
  6. Burger, W. C. 1998. The question of cotyledon homology in angiosperms. Botanical Review, 64, 356–371.Google Scholar
  7. Chandler, J. W. 2008. Cotyledon organogenesis. Journal of Experimental Botany, 59, 2917–2931.Google Scholar
  8. Clarke, K. L. 2006. Systematic Studies in Abildgaardieae (Cyperaceae). PhD thesis, University of New England, Australia.Google Scholar
  9. Coan, A. I., M. V. Alves & V. L. Scatena 2008. Comparative study of ovule and fruit development in species of Hypolytrum and Rhynchospora (Cyperaceae, Poales). Plant Systematics and Evolution, 272, 181–195.Google Scholar
  10. Davis, G. L. 1966. Systematic Embryology of the Angiosperms. John Wiley and Sons, New York, 102-103.Google Scholar
  11. Dhooge, S. 2005. Systematic revision and phylogeny of the Andean scirpoids (Cyperaceae Scirpeae). PhD thesis, Ghent University, Belgium.Google Scholar
  12. Elliott, T. L. & A. M. Muasya 2017. Taxonomic realignment in the southern African Tetraria (Cyperaceae, tribe Schoeneae; Schoenus clade). South African Journal of Botany, 112, 354–360.Google Scholar
  13. Escudero, M. & A. L. Hipp. 2013. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). American Journal of Botany, 100, 2403–2411.Google Scholar
  14. Gilmour, C. N., J. R. Starr & R. F. C. Naczi 2013. Calliscirpus, a new genus for two Narrow endemics of the California Floristic Province, C. criniger and C. brachythrix sp. nov. (Cyperaceae). Kew Bulletin, 68, 85–105Google Scholar
  15. Givnish, T. J., M. Ames, J. R. McNeal, M. R. McKain, P. R. Steele, C. W. dePamphilis, S. W. Graham, J. C. Pires, D. W. Stevenson, W. B. Zomlefer 2010. Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden, 97(4), 584–616.Google Scholar
  16. Goetghebeur, P. & J. Coudijzer 1984. Studies in Cyperaceae 3. Fimbristylis and Abildgaardia in Central Africa. Bulletin du Jardin botanique National de Belgique, 54, 65–89.Google Scholar
  17. Goetghebeur, P. 1986. Genera Cyperacearum. Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. PhD thesis, Ghent University, Belgium.Google Scholar
  18. Goetghebeur, P. 1998. Cyperaceae. In: K. Kubitzki (ed.), The families and genera of vascular plants 4: 141–190. Springer-Verlag, Berlin.Google Scholar
  19. Goloboff, P. A. & S. A. Catalano 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Caldistics, 32(3), 221–238.Google Scholar
  20. Gonzalez, A. M. & M. G. López 2010. Development and morphology of the gynoecium and nutlet in two South-American Bulbostylis (Cyperaceae) species. Flora, 205, 211–220.Google Scholar
  21. Govaerts R., D. A. Simpson, P. Goetghebeur, K. L. Wilson, T. Egorova, J. J. Bruhl 2018. World checklist of Cyperaceae. Kew: The Board of Trustees of the Royal Botanic Gardens, Kew. Available at: [accessed 22 May 2018]
  22. Global Carex Group (M. J. Waterway, M. Luceño, S. Martín-Bravo, J. R. Starr, K. L. Wilson, O. Yano, S.-R. Zhang, E. H. Roalson, W. S. Alverson, L. P. Bruederle, J. J. Bruhl, K.-S. Chung, T. S. Cochrane, M. Escudero, B. A. Ford, S. Gebauer, B. Gehrke, M. Hahn, A. L. Hipp, M. H. Hoffmann, T. Hoshino, P. Jiménez-Mejías, X.-F. Jin, J. Jung, S. Kim, E. Maguilla, T. Masaki, M. Miguez, A. Molina, R. F. C. Naczi, A. A. Reznicek, P. E. Rothrock, D. A. Simpson, D. Spalink, W. T. Thomas & T. Villaverde) 2015. Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Botanical Journal of the Linnean Society, 179, 1–42.Google Scholar
  23. Global Carex Group (P. Jiménez-Mejías, M. Hahn, K. Lueders, J. R. Starr, B. H. Brown, B. N. Chouinard, K.-S. Chung, M. Escudero, B. A. Ford, K. A. Ford, S. Gebauer, B. Gehrke, M. H. Hoffmann, X.-F. Jin, J. Jung, S. Kim, M. Luceño, E. Maguilla, S. Martín-Bravo, M. Míguez, A. Molina, R. F. C. Naczi, J. E. Pender, A. A. Reznicek, T. Villaverde, M. J. Waterway, K. L. Wilson, J.-C. Yang, S. Zhang, A. L. Hipp & E. H. Roalson) 2016. Megaphylogenetic Specimen-Level Approaches to the Carex (Cyperaceae) Phylogeny Using ITS, ETS, and matK Sequences: Implications for Classification. Systematic Botany, 41(3), 500–518.Google Scholar
  24. Glon, H. E., D. R. Shiels, E. Linton, J. R. Starr, A. L. Shorkey, S. Fleming, S. K. Lichtenwald, E. R. Schick, D. Pozo & A. K. Monfils 2017. A five gene phylogenetic study of Fuireneae (Cyperaceae) with a revision of Isolepis humillima. Systematic Botany, 42(1), 26–36.Google Scholar
  25. Grabherr, G. 1989. On community structure in high alpine grasslands. Vegetatio, 83, 223–227.Google Scholar
  26. Grass Phylogeny Working Group (Barker, N.P., L. G. Clark, J. I. Davis, M. R. Duvall, G. F. Guala, C. Hsiao, E. A. Kellogg, H. P. Linder) 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden, 88, 373–457.Google Scholar
  27. Hari Gopal, B. & H. Y. Mohan Ram 1985. Systematic significance of mature embryo of bamboos. Plant Systematics and Evolution, 148, 239–246.Google Scholar
  28. Herr J. M. 1984. Embryology and Taxonomy. In: Johri B.M. (eds) Embryology of Angiosperms. Springer, Berlin, HeidelbergGoogle Scholar
  29. Hinchliff, C. E., A. E. A. Lliully, T. Carey & E. H. Roalson 2010. The origins of Eleocharis (Cyperaceae) and the status of Websteria, Egleria, and Chillania. Taxon, 59(3), 709–719.Google Scholar
  30. Hinchliff, C. E. & E. H. Roalson 2013. Using supermatrices for phylogenetic inquiry: an example using the sedges. Systematic Biology, 62(2), 205–219.Google Scholar
  31. Jacques-Félix, H. 1988. Les Liliopsida (ex Monocotyledones) n’ont pas de cotylédon. II. La préfeuille de la plantule: ses rapports avec celles des axes feuillés. Adansonia, 3(10), 275–333.Google Scholar
  32. Johansen, D. A. 1950. Plant Embryology: Embryogeny of the Spermatophyta: 265–268. Chronica Botanica Co., Waltham.Google Scholar
  33. Juguet, M. 1971. Embryogenie des Cyperaceae et des families voisines. Application a la connaissance de l'embryon des Monocotyledones et a Ia systematique. PhD thesis, Amiens.Google Scholar
  34. Jung, J. & H. K. Choi 2010. Systematic rearrangement of Korean Scirpus L. s.l. (Cyperaceae) as inferred from nuclear ITS and chloroplast rbcL sequences. Journal of Plant Biology, 53, 222–232.Google Scholar
  35. Jung J. & H. K. Choi 2012. Recognition of two major clades and early diverged groups within the subfamily Cyperoideae (Cyperaceae) including Korean sedges. Journal of Plant Research, 136, 1–15.Google Scholar
  36. Katoh, K., G. Asimenos & H. Toh 2009. Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology, 537, 39–64.Google Scholar
  37. Katoh, K., K. Misawa, K. Kuma & T. Miyata 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.Google Scholar
  38. Katoh, K. & D. M. Standley 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30,772–780.Google Scholar
  39. Katsuyama, T., T. Hirahara & T. Hoshino 2007. Suprageneric phylogeny of Japanese Cyperaceae based on DNA sequences from chloroplast ndhF and 5.8 S nuclear ribosomal DNA. Acta Phytotaxonomica et Geobotanica, 58(2), 57.Google Scholar
  40. Landrum, L. R. & D. Stevenson 1986. Variability of embryos in subtribe Myrtinae (Myrtaceae). Systematic Botany, 11, 155–162.Google Scholar
  41. Larridon, I., K. Bauters, M. Reynders, W. Huygh, A. M. Muasya, D. A. Simpson & P. Goetghebeur 2013. Towards a new classification of the giant paraphyletic genus Cyperus (Cyperaceae): phylogenetic relationships and generic delimitation in C4 Cyperus. Botanical Journal of the Linnean Society, 172(1), 106–126.Google Scholar
  42. Larridon, I., M. Reynders & P. Goetghebeur 2008. Novelties in Nemum (Cyperaceae). Belgian Journal of Botany, 141(2), 157–177.Google Scholar
  43. Larridon I. 2011. Exploring giant genera and their satellites - Tales from the C3 Cyperus universe. PhD thesis, Ghent University, Belgium: 402 p.Google Scholar
  44. Larridon, I., M. Reynders, W. Huygh, K. Bauters, K. Van de Putte, A. M. Muasya, P. Boeckx, D. A. Simpson, A. Vrijdaghs P. Goetghebeur 2011a. Affinities in C3 Cyperus lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis. Botanical Journal of the Linnean Society, 167, 19–46.Google Scholar
  45. Larridon, I., M. Reynders, W. Huygh, K. Bauters, A. Vrijdaghs, O. Leroux, A. M. Muasya & P. Goetghebeur 2011b. Taxonomic changes in C3 Cyperus (Cyperaceae) supported by molecular phylogenetic data, morphology, embryography, ontogeny and anatomy. Plant Ecology and Evolution, 144, 327–356.Google Scholar
  46. Larridon, I., G. A. Verboom & A. M. Muasya 2017. Proposal to conserve the name Tetraria (Cyperaceae) with a conserved type. Taxon 66 (5): 1226–1227.Google Scholar
  47. Larridon, I., I. Semmouri, K. Bauters, J.-A. Viljoen, C. J. Prychid, A. M. Muasya, J. J. Bruhl, K. A. Wilson & P. Goetghebeur 2018a. Molecular phylogenetics of the genus Costularia (Schoeneae, Cyperaceae) reveals multiple distinct evolutionary lineages. Molecular Phylogenetics and Evolution, 126, 196–209.Google Scholar
  48. Larridon, I., G. A. Verboom & A. M. Muasya 2018b. Revised delimitation of the genus Tetraria (Schoeneae, Cyperaceae). South African Journal of Botany. (in review).Google Scholar
  49. Léveillé-Bourret, É 2018. Evolution and classification of the Cariceae-Dulichieae-Scirpeae clade (Cyperaceae). PhD thesis, University of Ottawa, Canada.Google Scholar
  50. Léveillé-Bourret, É., C. N. Gilmour, J. R. Starr, R. F. C. Naczi, D. Spalink & K. J. Systma 2014. Searching for the sister to sedges (Carex): Resolving relationships in the Cariceae-Dulichieae-Scirpeae clade (Cyperaceae). Botanical Journal of the Linnean Society, 176, 1–21.Google Scholar
  51. Léveillé-Bourret, É., S. Donadío, C. N. Gilmour & J. R. Starr 2015. Rhodoscirpus (Cyperaceae: Scirpeae), a new South American sedge genus supported by molecular, morphological, anatomical and embryological data. Taxon, 64, 931–944.Google Scholar
  52. Léveillé-Bourret, É., J. R. Starr & B. A. Ford 2018a. Why are there so many sedges? Sumatroscirpeae, a missing piece in the evolutionary puzzle of the giant genus Carex (Cyperaceae). Molecular Phylogenetics and Evolution, 119, 93–104.Google Scholar
  53. Léveillé-Bourret, É., J. R. Starr, B. A. Ford, E. M. Lemmon & A. R. Lemmon 2018b. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Systematic Biology 67, 94–102.Google Scholar
  54. Léveillé-Bourret, É., J. R. Starr & B. A. Ford. In press. A revision of Sumatroscirpus (Sumatroscirpeae), with discussions on Southeast Asian biogeography, general collecting, and homologues with Carex (Cariceae, Cyperaceae). Systematic Botany. Manuscript number: SYSBOT-D-17-00072.Google Scholar
  55. Lye, K.A. 1981. Studies in African Cyperaceae 22. New taxa and combinations in Abildgaardia Vahl II. Nordic Journal of Botany, 1, 749–758Google Scholar
  56. Maddison, W. P. & D. R. Maddison 2017. Mesquite: A modular system for evolutionary analysis. Version 3.2. [].
  57. Makde, K. H. & S. M. Bhuskute 1987. Embryology of Kyllinga monocephala (Cyperaceae) and its systematic position. Plant Systematics and Evolution, 156, 143–150.Google Scholar
  58. Miller, M. A., W. Pfeiffer & T. Schwartz 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE)–14 Nov. 2010: 1–8, New Orleans.Google Scholar
  59. Muasya, A. M. & P. J. De Lange 2010. Ficinia spiralis (Cyperaceae) a new genus and combination for Desmoschoenus spiralis. New Zealand Journal of Botany, 48, 31–39.Google Scholar
  60. Muasya, A. M., M. Reynders, P. Goetghebeur, D. A. Simpson & A. Vrijdaghs 2012. Dracoscirpoides (Cyperaceae) – a new genus from Southern Africa, its taxonomy and floral ontogeny. South African Journal of Botany, 78, 104–115.Google Scholar
  61. Muasya A. M., D. A. Simpson, G. A. Verboom, P. Goetghebeur, R. F. C. Naczi, M. W. Chase, E. Smets 2009a. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Botanical Review, 75, 2–21.Google Scholar
  62. Muasya, A. M., A. Vrijdaghs, D. A. Simpson, M. W. Chase, P. Goetghebeur, E. Smets 2009b. What is a genus in Cypereae: phylogeny, character homology assessment and generic circumscription in Cypereae. Botanical Review, 75, 52–66.Google Scholar
  63. Müller, J., K. Müller, C. Neinhuis, D. Quandt 2010. PhyDE–Phylogenetic Data Editor, version 0.9971.
  64. Naczi, R. F. & B. A. Ford 2008. Sedges: uses, diversity, and systematics of Cyperaceae. Missouri Botanical Garden Press, St Louis.Google Scholar
  65. Nardmann, J., R. Zimmermann, D. Durantini, F. Kranz & W. Werr 2007. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development. Molecular Biology and Evolution, 24(11), 2474–2484.Google Scholar
  66. Padhye, M. D. 1971. Studies in Cyperaceae I. Embryology of Cyperus iria Linn. Proceedings of the Indian Naturalist Science Academy, series B 37, 1–10.Google Scholar
  67. Padhye, M. D. & K. H. Makde 1982. Embryogeny in some Cypereae. Plant Systematics and Evolution, 139, 279–287.Google Scholar
  68. Palser, B.F. 1975. The bases of angiosperm phylogeny: embryology. Annals of the Missouri Botanical Garden, 62, 621–646.Google Scholar
  69. Rambaut, A. 2009. FigTree, version 1.4.0.
  70. Rambaut, A. & A. J. Drummond 2014. Tracer v1.6. Website
  71. Reece, J. B., L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. Jackson (eds.) 2011. Campbell Biology (Ninth Edition). Pearson Education, Inc., San Francisco.Google Scholar
  72. Reeder, J. R. 1957. The embryo in grass systematics. American Journal of Botany, 44, 756–769.Google Scholar
  73. Reeder, J. R. 1962. The bambusoid embryo: a reappraisal. American Journal of Botany, 49(6), 639–641.Google Scholar
  74. Reid, C. S., V. P. Doyle, J. R. Carter, Y. Vargas-Rodriguez & L. E. Urbatsch 2017. Molecular systematics of targeted flat sedges (Cyperus, Cyperaceae) of the Americas. Plant Ecology and Evolution, 150(3), 343–357.Google Scholar
  75. Reutemann, A. G., R. E. Ardissone, M. G. López, S. E. Muchut, I. Boldrini I, A. B. Vegetti & L. M. Giussani 2018. Phylogenetic relationships in the Bulbostylis (Abildgaardieae: Cyperaceae) inferred from nuclear and plastid DNA sequence data. Systematics and Biodiversity, DOI:
  76. Roalson, E. H. & E. A. Friar 2000. Infrageneric classification of Eleocharis (Cyperaceae) revisited: evidence from the Internal Transcribed Spacer (ITS) region of nuclear ribosomal DNA. Systematic Botany, 25, 323–336.Google Scholar
  77. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Google Scholar
  78. Ruhfel, B. R., M. A. Gitzendanner, P. S. Soltis, D. E. Soltis & J. G. Burleigh 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology, 14, 23.Google Scholar
  79. Schneider, M. 1932. Untersuchungen über die Embryobildung und -entwicklung der Cyperaceen. Beihefte zum Botanischen Centralblatt, 49(1), 649–674.Google Scholar
  80. Semmouri, I. 2016. Character evolution in Cyperaceae: The importance of the small embryos. MSc thesis, Ghent University, Belgium.Google Scholar
  81. Shah, C. K. 1964. Embryo development in Eleocharis palustris L., Nature Canada, 91, 41–49.Google Scholar
  82. Shah, C. K. 1965. Embryogeny in some Cyperaceae. Phytomorphology, 15, 1–9.Google Scholar
  83. Shiels, D. R., D. L. Hurlbut, S. K. Lichtenwald & A. K. Monfils 2014. Monophyly and phylogeny of Schoenoplectus and Schoenoplectiella (Cyperaceae): Evidence from chloroplast and nuclear DNA Sequences. Systematic Botany, 39(1), 132–144.Google Scholar
  84. Simpson, D. A. & C. A. Inglis 2001. Cyperaceae of Economic and Horticultural Importance: a Checklist. Kew Bulletin, 56(2), 257–360.Google Scholar
  85. Simpson, D. A., C. A. Furness, T. R. Hodkinson, A. M. Muasya & M. W. Chase 2003. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. American Journal of Botany, 90, 1071–1086.Google Scholar
  86. Simpson, D. A., A. M. Muasya, M. Alves, J. J. Bruhl, S. Dhooge, M. W. Chase, C. A. Furness, K. Ghamkhar, P. Goetghebeur & T. R. Hodkinson 2007. Phylogeny of Cyperaceae based on DNA sequence data—a new rbcL analysis. Aliso, 23(2), 72–83.Google Scholar
  87. Simpson, D. A., C. Yesson, A. Culham, C. A. Couch & A. M. Muasya 2011. Climate change and Cyperaceae. In: T. Hodkinson, M. Jones, S. Waldren & J. Parnell (eds.), Climate change, ecology and systematics: 439–456. Cambridge University Press, Cambridge.Google Scholar
  88. Slingsby, J. A., M. N. Britton & G. A. Verboom 2014. Ecology limits the diversity of the Cape flora: phylogenetics and diversification of the genus Tetraria. Molecular Phylogenetics and Evolution, 72, 61–70.Google Scholar
  89. Small, E., and J. Cayouette. 2016. 50. Sedges – the key sustainable resource for Arctic biodiversity. Biodiversity, 17(1–2), 60–69.Google Scholar
  90. Smith, S. Y., M. E. Collinson, D. A. Simpson, P. J. Rudall, F. Marone & M. Stampanoni 2009. Elucidating the affinities and habitat of ancient, widespread Cyperaceae: Volkeria messelensis gen. et sp. nov., a fossil mapanioid sedge from the Eocene of Europe. American Journal of Botany, 96(8), 1506–1518.Google Scholar
  91. Spalink, D., B. T. Drew, M. C. Pace, J. G. Zaborsky, J. R. Starr, K. M. Cameron, T. J. Givnish & K. J. Sytsma 2016. Biogeography of the cosmopolitan sedges (Cyperaceae) and the area-richness correlation in plants. Journal of Biogeography, 43(10), 1893–1904.Google Scholar
  92. Strong, M. T. 2003. Cypringlea, a new genus of Cyperaceae from Mexico. Novon, 13, 123–132.Google Scholar
  93. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.Google Scholar
  94. Starr, J. R., S. A. Harris & D. A. Simpson 2003. Potential of the 5′ and 3′ ends of the intergenic spacer (IGS) of rDNA in the Cyperaceae: new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. International Journal of Plant Sciences, 164(2), 213–227.Google Scholar
  95. Starr, J. R., F. H. Jansen & B. A. Ford 2015. Three new early diverging Carex (Cariceae–Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications. Molecular Phylogenetics and Evolution, 88, 105–120.Google Scholar
  96. Sun, Y., D. Z. Skinner, G. H. Liang & S. H. Hulbert 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics, 89(1), 26–32.Google Scholar
  97. Tiwari, D. K. 1970. Embryological studies in the Cyperaceae. Master thesis, Ravishankar Shukla University.Google Scholar
  98. Vahl, M. 1805. Enumeratio plantarum 2: 60 + 381 p. Schubothe, Hauniae & Lipsiae.Google Scholar
  99. Vaidya, G., D. J. Lohman, R. Meier 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27, 171–180.Google Scholar
  100. Van Bergen, M. 1977. Systematische embryografie en vergelijkend bloemmorfologisch onderzoek van de Cyperaceae–Caricoideae. MSc thesis, Ghent University, Belgium.Google Scholar
  101. Van Der Linden, L. 1971. Systematische embryografie van de Cyperaceae-Mapanioideae. MSc thesis, Ghent University, Belgium.Google Scholar
  102. Van der Veken, P. 1964. Bijdrage tot de systematische embryologie der Cyperaceae–Cyperoideae. PhD thesis, KULeuven and Rijksplantentuin, Brussels.Google Scholar
  103. Van der Veken, P. 1965. Contribution à l’embryographie systématique des Cyperaceae-Cyperoideae. Bulletin du Jardin botanique de l’État à Bruxelles 35 (3): 285–354.Google Scholar
  104. Vanhecke, L. (1970). Systematische embryografie van de Cladiinae en Gahniinae (Cyperaceae). MSc thesis, Ghent University, Belgium.Google Scholar
  105. Verbelen, J. P. (1969). Systematische embryografie van de rhynchosporineae (Cyperaceae). MSc thesis, Ghent University, Belgium.Google Scholar
  106. Verboom, G. A. 2006. A phylogeny of the schoenoid sedges (Cyperaceae: Schoeneae) based on plastid DNA sequences, with special reference to the genera found in Africa. Molecular Phylogenetics and Evolution, 38, 79–89.Google Scholar
  107. Viljoen, J.-A., A. M. Muasya, R. Barrett, J. J. Bruhl, A. K. Gibbs, J. A. Slingsby, K. L. Wilson & G. A. Verboom 2013. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the Southern hemisphere. American Journal of Botany, 100(12), 2494–2508.Google Scholar
  108. Wafaa K. T. 2005. Modern Trends in Plant Taxonomy. Asian Journal of Plant Sciences, 4, 184–206.Google Scholar
  109. Waterway, M., T. Hoshino & T. Masaki 2009. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Review, 75, 138–159.Google Scholar
  110. White, T. J., S. L. Bruns & J. Taylor 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (eds.), PCR protocols, a guide to methods and applications: 315–322. Academic Press, New York.Google Scholar
  111. Wiens, J J. & M. C. Morrill 2011 Missing Data in Phylogenetic Analysis: Reconciling Results from Simulations and Empirical Data, Systematic Biology, 60, 719–731.Google Scholar
  112. Wilson, K. L. 1993. Cyperaceae. In: G. J. Harden (ed.), Flora of New South Wales: 293–396. University of New South Wales, Sydney.Google Scholar
  113. Yang, Z. & B. Rannala 2012. Molecular phylogenetics: Principles and practice. Nature Reviews Genetics, 13(5), 303–314.Google Scholar
  114. Zhang, X., Marchant, A., Wilson, K.L. and Bruhl, J.J. (2004). Phylogenetic relationships of Carpha and its relatives (Schoeneae, Cyperaceae) inferred from chloroplast trnL intron and trnLtrnF intergenic spacer sequences. Molecular Phylogenetics and Evolution, 31(2), 647–657.Google Scholar

Copyright information

© The New York Botanical Garden 2018

Authors and Affiliations

  • Ilias Semmouri
    • 1
    • 2
  • Kenneth Bauters
    • 1
    • 3
  • Étienne Léveillé-Bourret
    • 4
  • Julian R. Starr
    • 4
  • Paul Goetghebeur
    • 1
  • Isabel Larridon
    • 1
    • 5
    Email author
  1. 1.Department of Biology, Research Group SpermatophytesGhent UniversityGentBelgium
  2. 2.Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic EcologyGhent UniversityGentBelgium
  3. 3.Botanic Garden MeiseMeiseBelgium
  4. 4.Department of BiologyUniversity of OttawaOttawaCanada
  5. 5.B.A. Krukoff Curator of African Botany, Royal Botanic GardensSurreyUK

Personalised recommendations