Advertisement

The Botanical Review

, Volume 84, Issue 2, pp 156–202 | Cite as

Phylogenetic Analyses of Cretaceous Fossils Related to Chloranthaceae and their Evolutionary Implications

  • James A. Doyle
  • Peter K. Endress
Article

Abstract

Chloranthaceae were one of the first common lines during the early radiation of angiosperms, possibly reflecting adaptation to more open habitats. Phylogenetic analyses clarify the position of Cretaceous mesofossils in molecular trees of Recent taxa. Plants that produced Asteropollis pollen, with tepals adnate to a single carpel, are nested in crown group Chloranthaceae with Hedyosmum; Canrightiopsis, with three stamens and no perianth, is sister to Sarcandra and Chloranthus; and Canrightia is a stem relative that illustrates a still bisexual stage in floral reduction. Plants that produced Pennipollis pollen are related to Chloranthaceae and/or Ceratophyllum rather than monocots. Appomattoxia, which produced Tucanopollis pollen, has equivocal affinities, but Pseudoasterophyllites, with similar pollen and stems with reduced leaves, may be a link between Chloranthaceae and Ceratophyllum. These results imply that flowers became unisexual before losing the perianth, while bisexual flowers in Canrightiopsis, Sarcandra, and Chloranthus are secondarily derived from unisexual flowers.

Keywords

Angiosperms Chloranthaceae Cretaceous Paleobotany Phylogeny Evolution 

Notes

Acknowledgements

We thank Alejandra Gandolfo and Elizabeth Hermsen for inviting us to present a talk at the International Palaeontology Congress in Mendoza, Argentina (2014), on which this paper is based; Cuong Nguyen for hosting JAD at Cuc Phuong National Park; Paulo Schwirkowski for providing a photograph of Hedyosmum brasiliense; and two anonymous reviewers for useful comments on the manuscript.

References

  1. Antonelli, A. & I. Sanmartín. 2011. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Systematic Biology 60: 596–615.CrossRefPubMedGoogle Scholar
  2. Antonov A. S., A. V. Troitsky, T. K. Samigullin, V. K. Bobrova, K. M. Valiejo-Roman & W. Martin. 2000. Early events in the evolution of angiosperms deduced from cp rDNA ITS 2–4 sequence comparisons. Pp. 210–214. In: Y.-H. Liu, H.-M. Fan, Z.-Y. Chen, Q.-G. Wu & Q.-W. Zeng (eds.), Proceedings of the International Symposium on the Family Magnoliaceae. Science Press, Beijing.Google Scholar
  3. Batten, D. J. & A. M. Zavattieri. 1995. Occurrence of dispersed seed cuticles and similar microfossils in mainly Cretaceous successions of the Northern Hemisphere. Cretaceous Research 16: 73-94.CrossRefGoogle Scholar
  4. Blanc, P. 1986. Edification d'arbres par croissance d'établissement de type monocotylédonien: l'exemple de Chloranthaceae. Pp. 101-123. In: Colloque international sur l'Arbre 1986. Naturalia Monspeliensia, numéro hors série.Google Scholar
  5. Brenner, G. J. 1963. The spores and pollen of the Potomac Group of Maryland. Maryland Department of Geology, Mines and Water Resources Bulletin 27: 1-215.Google Scholar
  6. --- 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pp. 23-47. In: C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  7. ---. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. Pp. 91-115. In: D. W. Taylor & L. J. Hickey (eds.), Flowering plant origin, evolution & phylogeny. Chapman & Hall, New York.Google Scholar
  8. Burger, W. C. 1977. The Piperales and the monocots. Alternate hypotheses for the origin of monocotyledonous flowers. Botanical Review 43: 345-393.CrossRefGoogle Scholar
  9. Burrows, C. J. 1996. Germination behaviour of seeds of the New Zealand woody species Ascarina lucida, Coprosma grandifolia, Melicytus lanceolatus, and Solanum laciniatum. New Zealand Journal of Botany 34: 509-515.CrossRefGoogle Scholar
  10. Cantino, P. D., J. A. Doyle, S. W. Graham, W. S. Judd, R. G. Olmstead, D. E. Soltis, P. S. Soltis & M. J. Donoghue. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822-846.CrossRefGoogle Scholar
  11. Clarke, J. T., R. C. M. Warnock & P. C. J. Donoghue. 2011. Establishing a time-scale for plant evolution. New Phytologist 192: 266-301.CrossRefPubMedGoogle Scholar
  12. Cordemoy, C. J. de . 1863. Monographie du groupe des Chloranthacées. Adansonia 3: 280–310.Google Scholar
  13. Couper, R. A. 1958. British Mesozoic microspores and pollen grains. Palaeontographica Abteilung B 103: 75-179.Google Scholar
  14. Crane, P. R., E. M. Friis & K. R. Pedersen. 1989. Reproductive structure and function in Cretaceous Chloranthaceae. Plant Systematics and Evolution 165: 211-226.CrossRefGoogle Scholar
  15. Crane, P. R., K. R. Pedersen, E. M. Friis & A. N. Drinnan. 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Systematic Botany 18: 328-344.CrossRefGoogle Scholar
  16. D’Arcy, W. G. & R. L. Liesner. 1981. Hedyosmum (Chloranthaceae) in Panama. Systematic Botany 6: 74-86.CrossRefGoogle Scholar
  17. Dickison, W. C. 1992. Morphology and anatomy of the flower and pollen of Saruma henryi Oliv., a phylogenetic relict of the Aristolochiaceae. Bulletin of the Torrey Botanical Club 119: 392-400.CrossRefGoogle Scholar
  18. Doria, M. G., N. Pabón-Mora & F. González. 2012. Reassessing inflorescence and floral morphology and development in Hedyosmum (Chloranthaceae). International Journal of Plant Sciences 173: 735-750.CrossRefGoogle Scholar
  19. Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. Journal of the Arnold Arboretum 50: 1-35.CrossRefGoogle Scholar
  20. ---. 1992. Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian-Aptian). Cretaceous Research 13: 337-349.Google Scholar
  21. ---. 2001. Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. The Palaeobotanist 50: 167-188.Google Scholar
  22. ---. 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227-251.Google Scholar
  23. --- & P. K. Endress. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences 161(Supplement): S121-S153.Google Scholar
  24. --- & ---. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. Journal of Systematics and Evolution 48: 1-35.Google Scholar
  25. --- & ---. 2011. Tracing the early evolutionary diversification of the angiosperm flower. Pp. 88-119. In: L. Wanntorp & L. P. Ronse De Craene (eds.), Flowers on the tree of life. Cambridge University Press, Cambridge, UK.Google Scholar
  26. --- & ---. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. International Journal of Plant Sciences 175: 555-600.Google Scholar
  27. --- & L. J. Hickey. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pp. 139-206. In: C. B. Beck (ed.), Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
  28. --- & C. L. Hotton. 1991. Diversification of early angiosperm pollen in a cladistic context. Pp. 169-195. In: S. Blackmore & S. H. Barnes (eds.), Pollen and spores: patterns of diversification. Clarendon Press, Oxford.Google Scholar
  29. --- & G. R. Upchurch, Jr. 2014. Angiosperm clades in the Potomac Group: what have we learned since 1977? Bulletin of the Peabody Museum of Natural History 55: 111-134.Google Scholar
  30. ---, P. Biens, A. Doerenkamp & S. Jardiné. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 1: 451-473.Google Scholar
  31. ---, H. Eklund & P. S. Herendeen. 2003. Floral evolution in Chloranthaceae: implications of a morphological phylogenetic analysis. International Journal of Plant Sciences 164(5 Supplement): S365-S382.Google Scholar
  32. ---, P. K. Endress & G. R. Upchurch, Jr. 2008. Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae, Series B, Historia Naturalis, 64(2-4): 59-87.Google Scholar
  33. ---, S. Jardiné & A. Doerenkamp. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 6: 39-117.Google Scholar
  34. ---. M. Van Campo & B. Lugardon. 1975. Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen et Spores 17: 429-486.Google Scholar
  35. Drinnan, A. N., P. R. Crane, E. M. Friis & K. R. Pedersen. 1990. Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Botanical Gazette 151: 370-384.CrossRefGoogle Scholar
  36. ---, ---, --- & ---. 1991. Angiosperm flowers and tricolpate pollen of buxaceous affinity from the Potomac Group (mid-Cretaceous) of eastern North America. American Journal of Botany 78: 153-176.Google Scholar
  37. Duvall, M. R., S. Mathews, N. Mohammad & T. Russell. 2006. Placing the monocots: conflicting signal from trigenomic analyses. Aliso 22: 79-90.CrossRefGoogle Scholar
  38. ---, J. W. Robinson, J. G. Mattson & A. Moore. 2008. Phylogenetic analyses of two mitochondrial metabolic genes sampled in parallel from angiosperms find fundamental interlocus incongruence. American Journal of Botany 95: 871-884.Google Scholar
  39. Eklund, H. 1999. Phylogeny of living and fossil Chloranthaceae. Big survivors with small flowers: fossil history and evolution of Laurales and Chloranthaceae. PhD Thesis, Uppsala University, SwedenGoogle Scholar
  40. ---, J. A. Doyle & P. S. Herendeen. 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. International Journal of Plant Sciences 165: 107-151.Google Scholar
  41. ---, E. M. Friis & K. R. Pedersen. 1997. Chloranthaceous floral structures from the Late Cretaceous of Sweden. Plant Systematics and Evolution 207: 13-42.Google Scholar
  42. Endress, P. K. 1986. Reproductive structures and phylogenetic significance of extant primitive angiosperms. Plant Systematics and Evolution 152: 1-28.CrossRefGoogle Scholar
  43. --- 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Botanische Jahrbücher für Systematik 109: 153-226.Google Scholar
  44. --- 1994. Evolutionary aspects of the floral structure in Ceratophyllum. Plant Systematics and Evolution Supplement 8: 175-183.Google Scholar
  45. --- 2004. Structure and relationships of basal relictual angiosperms. Australian Systematic Botany 17: 343-366.Google Scholar
  46. --- & F. B. Sampson. 1983. Floral structure and relationships of the Trimeniaceae (Laurales). Journal of the Arnold Arboretum 64: 447-473.Google Scholar
  47. --- & A. Igersheim. 2000. The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). International Journal of Plant Sciences 161 (Supplement): S237-S248.Google Scholar
  48. --- & J. A. Doyle. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany 96: 22-66.Google Scholar
  49. Feild, T. S., N. C. Arens, J. A. Doyle, T. E. Dawson & M. J. Donoghue. 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82-107.CrossRefGoogle Scholar
  50. ---, D. S. Chatelet & T. J. Brodribb. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology 7: 237-264.Google Scholar
  51. Friedman, J. & S. C. H. Barrett. 2008. A phylogenetic analysis of the evolution of wind pollination in the angiosperms. International Journal of Plant Sciences 169: 49-58.CrossRefGoogle Scholar
  52. Friis, E. M. & K. R. Pedersen. 2011. Canrightia resinifera gen. et sp. nov., a new extinct angiosperm with Retimonocolpites-type pollen from the Early Cretaceous of Portugal: missing link in the eumagnoliid tree? Grana 50: 3-29.CrossRefGoogle Scholar
  53. ---, P. R. Crane & K. R. Pedersen. 1986. Floral evidence for Cretaceous chloranthoid angiosperms. Nature 320: 163-164.Google Scholar
  54. ---, --- & ---. 1988. Reproductive structures of Cretaceous Platanaceae. Biologiske Skrifter Danske Videnskabernes Selskab 31: 1-55.Google Scholar
  55. ---, --- & ---. 2011. Early flowers and angiosperm evolution. Cambridge University Press, Cambridge.Google Scholar
  56. ---, H. Eklund, K. R. Pedersen & P. R. Crane. 1994a. Virginianthus calycanthoides gen. et sp. nov. – a calycanthaceous flower from the Potomac Group (Early Cretaceous) of eastern North America. International Journal of Plant Sciences 155: 772-785.Google Scholar
  57. ---, K. R. Pedersen & P. R. Crane. 1994b. Angiosperm floral structures from the Early Cretaceous of Portugal. Plant Systematics and Evolution Supplement 8: 31-49.Google Scholar
  58. ---, --- & ---. 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. American Journal of Botany 82: 933-943.Google Scholar
  59. ---, --- & ---. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden 86: 259-296.Google Scholar
  60. ---, --- & ---. 2000a. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39: 226-239.Google Scholar
  61. ---, --- & ---. 2000b. Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of western Portugal. International Journal of Plant Sciences 161 (Supplement): S169-S182.Google Scholar
  62. ---, --- & ---. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357-360.Google Scholar
  63. ---, --- & ---. 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography Palaeoclimatology Palaeoecology 232: 251-293.Google Scholar
  64. ---, --- & ---. 2010. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Review of Palaeobotany and Palynology 162: 341-361.Google Scholar
  65. ---, ---, M. von Balthazar, G. W. Grimm & P. R. Crane. 2009. Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. International Journal of Plant Sciences 170: 1086–1101.Google Scholar
  66. ---, G. W. Grimm, M. M. Mendes & K. R. Pedersen. 2015. Canrightiopsis, a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae. Grana 54: 184-212.Google Scholar
  67. Goldberg, E. E., S. P. Otto, J. C. Vamosi, I. Mayrose, N. Sabath, R. Ming & T.-L. Ashman. 2017. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71: 898-912.CrossRefPubMedGoogle Scholar
  68. Gomez, B., V. Daviero-Gomez, C. Coiffard, C. Martín-Closas & D. L. Dilcher. 2015. Montsechia, an ancient aquatic angiosperm. Proceedings of the National Academy of Sciences of the USA 112: 10985-10988.CrossRefPubMedGoogle Scholar
  69. Góczán, F. & M. Juhász. 1984. Monosulcate pollen grains of angiosperms from Hungarian Albian sediments I. Acta Botanica Hungarica 30: 289-319.Google Scholar
  70. Hartkopf-Fröder, C., J. Rust, T. Wappler, E. M. Friis & A. Viehofen. 2012. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies. Biology Letters 8: 295-298.CrossRefPubMedGoogle Scholar
  71. Hedlund, R. W. & G. Norris. 1968. Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. Pollen et Spores 10: 129-159.Google Scholar
  72. Heimhofer, U. & P. A. Hochuli. 2010. Early Cretaceous angiosperm pollen from a low-latitude succession (Araripe Basin, NE Brazil). Review of Palaeobotany and Palynology 161: 105-126.CrossRefGoogle Scholar
  73. ---, ---, S. Burla & H. Weissert. 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144: 39-76.Google Scholar
  74. Herendeen, P. S., W. L. Crepet & K. C. Nixon. 1993. Chloranthus-like stamens from the Upper Cretaceous of New Jersey. American Journal of Botany 80: 865-871.CrossRefGoogle Scholar
  75. Hermsen, E. J. & J. R. Hendricks. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95: 72-100.CrossRefGoogle Scholar
  76. Hesse, M. 2001. Pollen characters of Amborella trichopoda (Amborellaceae): a reinvestigation. International Journal of Plant Sciences 162: 201-208.CrossRefGoogle Scholar
  77. --- & R. Zetter. 2007. The fossil pollen record of Araceae. Plant Systematics and Evolution 263: 93-115.Google Scholar
  78. Hickey, L. J. & J. A. Doyle. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review 43: 1-104.CrossRefGoogle Scholar
  79. --- & J. A. Wolfe. 1975. The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden 62: 538-589.Google Scholar
  80. Hughes, N. F. 1994. The enigma of angiosperm origins. Cambridge University Press, Cambridge, UK.Google Scholar
  81. --- & A. B. McDougall. 1987. Records of angiospermid pollen entry into the English Early Cretaceous succession. Review of Palaeobotany and Palynology 50: 255-272.Google Scholar
  82. ---, G. E. Drewry & J. F. Laing. 1979. Barremian earliest angiosperm pollen. Palaeontology 22: 513-535.Google Scholar
  83. Iwamoto, A., A. Shimizu & H. Ohba. 2003. Floral development and phyllotactic variation in Ceratophyllum demersum (Ceratophyllaceae). American Journal of Botany 90: 1124-1130.CrossRefPubMedGoogle Scholar
  84. Jansen, R. K., Z. Cai, L. A. Raubeson, H. Daniell, C. W. de Pamphilis, J. Leebens-Mack, K. F. Müller, M. Guisinger-Bellian, R. C. Haberle, A. K. Hansen, T. W. Chumley, S.-B. Lee, R. Peery, J. R. McNeal, J. V. Kuehl & J. L. Boore. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences of the USA 104: 19369-19374.CrossRefPubMedGoogle Scholar
  85. Jérémie, J. 1980. Notes sur le genre Ascarina (Chloranthaceae) en Nouvelle-Calédonie et à Madagascar. Adansonia, Sér. 2 20: 273-285.Google Scholar
  86. Kemp, E. M. 1968. Probable angiosperm pollen from British Barremian to Albian strata. Palaeontology 11: 421-434.Google Scholar
  87. Krassilov, V. 2011. On Montsechia, an angiospermoid plant from the Lower Cretaceous of Las Hoyas, Spain: new data and interpretations. Acta Palaeobotanica 51: 181-205.Google Scholar
  88. Krutzsch, W. 1989. Paleogeography and historical phytogeography (paleochorology) in the Neophyticum. Plant Systematics and Evolution 162: 5-61.CrossRefGoogle Scholar
  89. Kvaček, J. & H. Eklund. 2003. A report on newly recovered reproductive structures from the Cenomanian of Bohemia (Central Europe). International Journal of Plant Sciences 164: 1021-1039.CrossRefGoogle Scholar
  90. --- & E. M. Friis. 2010. Zlatkocarpus gen. nov., a new angiosperm reproductive structure with monocolpate-reticulate pollen from the Late Cretaceous (Cenomanian) of the Czech Republic. Grana 49: 115-127.Google Scholar
  91. ---, B. Gomez & R. Zetter. 2012. The early angiosperm Pseudoasterophyllites cretaceus from Albian-Cenomanian of Czech Republic and France revisited. Acta Palaeontologica Polonica 57: 437-443.Google Scholar
  92. ---, J. A. Doyle, P. K. Endress, V. Daviero-Gomez, B. Gomez & M. Tekleva. 2016. Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: A possible link between Chloranthaceae and Ceratophyllum. Taxon 65: 1345–1373.Google Scholar
  93. Leroy, J.-F. 1983. The origin of angiosperms: an unrecognized ancestral dicotyledon, Hedyosmum (Chloranthales), with a strobiloid flower is living today. Taxon 32: 169-175.CrossRefGoogle Scholar
  94. Loconte, H. & D. W. Stevenson. 1991. Cladistics of the Magnoliidae. Cladistics 7: 267-296.CrossRefGoogle Scholar
  95. Luo, Y.-B. & Z.-Y. Li. 1999. Pollination ecology of Chloranthus serratus (Thunb.) Roem. et Schult. and Ch. fortunei (A. Gray) Solms-Laub. (Chloranthaceae). Annals of Botany 83: 489-499.CrossRefGoogle Scholar
  96. Ma, S.-B., Y.-H. Wang & M.-K. Cui. 1997. A contribution to the reproductive biology of Chloranthus holostagius (Chloranthaceae) in Mile population. Acta Botanica Yunnanica 19: 415-422.Google Scholar
  97. Maddison, D. R. & W. P. Maddison. 2003. MacClade 4: analysis of phylogeny and character evolution, version 4.06. Sinauer Associates, Sunderland, Mass.Google Scholar
  98. Martin, T. J. & J. Ogden. 2002. The seed ecology of Ascarina lucida: a rare New Zealand tree adapted to disturbance. New Zealand Journal of Botany 40: 397-404.CrossRefGoogle Scholar
  99. Martín-Closas, C. 2003. The fossil record and evolution of freshwater plants: a review. Geologica Acta 1: 315-338.Google Scholar
  100. Martínez, C., S. Madriñán, M. Zavada & C. A. Jaramillo. 2013. Tracing the fossil pollen record of Hedyosmum (Chloranthaceae), an old lineage with recent Neotropical diversification. Grana 52: 161-180.CrossRefGoogle Scholar
  101. Massoni, J., J. Doyle & H. Sauquet. 2015. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontologia Electronica 17(3), 2FC, 25 pp.Google Scholar
  102. Mathews, S. & M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947-950.CrossRefPubMedGoogle Scholar
  103. McGlone, M. S. & N. T. Moar. 1977. The Ascarina decline and post-glacial climatic change in New Zealand. New Zealand Journal of Botany 15: 485-489.CrossRefGoogle Scholar
  104. Meeuse, A. D. J. 1972. Facts and fiction in floral morphology with special reference to the Polycarpicae. Acta Botanica Neerlandica 21: 113-127, 235-252, 351-365.Google Scholar
  105. Miner, E. L. 1935. Paleobotanical examinations of Cretaceous and Tertiary coals. American Midland Naturalist 16: 585-625.CrossRefGoogle Scholar
  106. Moore, L. B. 1977. The flowers of Ascarina lucida Hook. f. (Chloranthaceae). New Zealand Journal of Botany 15: 491-494.CrossRefGoogle Scholar
  107. Moore, M. J., C. D. Bell, P. S. Soltis & D. E. Soltis. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proceedings of the National Academy of Sciences of the USA 104: 19363-19368.CrossRefPubMedGoogle Scholar
  108. ---, N. Hassan, M. A. Gitzendanner, R. A. Bruenn, M. Croley, A. Vandeventer, J. W. Horn, A. Dhingra, S. F. Brockington, M. Latvis, J. Ramdial, R. Alexandre, A. Piedrahita, Z. Xi, C. C. Davis, P. S. Soltis & D. E. Soltis. 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. International Journal of Plant Sciences 172: 541–558.Google Scholar
  109. Muller, J. 1981. Fossil pollen records of extant angiosperms. Botanical Review 47: 1-142.CrossRefGoogle Scholar
  110. Nixon, K. C. 2008. Paleobotany, evidence, and molecular dating: an example from the Nymphaeales. Annals of the Missouri Botanical Garden 95: 43-50.CrossRefGoogle Scholar
  111. ---, W. L. Crepet, D. Stevenson & E. M. Friis. 1994. A reevaluation of seed plant phylogeny. Annals of the Missouri Botanical Garden 81: 484-533.Google Scholar
  112. Norris, G. 1967. Spores and pollen from the Lower Colorado Group (Albian-?Cenomanian) of central Alberta. Palaeontographica Abteilung B 120: 72-115.Google Scholar
  113. Ogg, J. G. & L. A. Hinnov. 2013. Cretaceous. Pp. 793-853. In: F. M. Gradstein, J. G. Ogg, M. D. Schmitz & G. M. Ogg (eds.), The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
  114. Parkinson, C. L., K. L. Adams & J. D. Palmer. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Current Biology 9: 1485-1488.CrossRefPubMedGoogle Scholar
  115. Pedersen, K. R., P. R. Crane, A. N. Drinnan & E. M. Friis. 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. Grana 30: 577-590.CrossRefGoogle Scholar
  116. Penny, J. H. J. 1988. Early Cretaceous acolumellate semitectate pollen from Egypt. Palaeontology 31: 373-418.Google Scholar
  117. Pierce, R. L. 1961. Lower Upper Cretaceous plant microfossils from Minnesota. Minnesota Geological Survey Bulletin 42: 1-86.Google Scholar
  118. Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen & M. W. Chase. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404-407.CrossRefPubMedGoogle Scholar
  119. ---, L Li, B. Wang, J.-Y. Xue, T. A. Hendry, R.-Q. Li, J. W. Brown, Y. Liu, G. T. Hudson & Z.-D. Chen. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. Journal of Systematics and Evolution 48: 391-425.Google Scholar
  120. Rawlings, G. B. 1974. Northland notes 3. New Zealand Journal of Botany 12: 563-565.CrossRefGoogle Scholar
  121. Regal, P. J. 1982. Pollination by wind and animals: ecology of geographic patterns. Annual Review of Ecology and Systematics 13: 497-524.CrossRefGoogle Scholar
  122. Regali, M. S. P. 1989. Tucanopollis, um gênero novo das angiospermas primitivas. Boletim de Geociências da Petrobrás 3, 395-402.Google Scholar
  123. ---, N. Uesugui & A. S. Santos. 1974. Palinologia dos sedimentos meso-cenozóicos do Brasil. Boletim Técnico da Petrobrás 17: 177-191, 263-301.Google Scholar
  124. Saarela, J. M., H. S. Rai, J. A. Doyle, P. K. Endress, S. Mathews, A. D. Marchant, B. G. Briggs & S. W. Graham, 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312-315.CrossRefPubMedGoogle Scholar
  125. Sauquet, H., M. von Balthazar, S. Magallón, J. A. Doyle, P. K. Endress, E. J. Bailes, E. Barroso de Morais, K. Bull-Hereñu, L. Carrive, M. Chartier, G. Chomicki, M. Coiro, R. Cornette, J. H. L. El Ottra, C. Epicoco, C. S. P. Foster, F. Jabbour, A. Haevermans, T. Haevermans, R. Hernández, S. A. Little, S. Löfstrand, J. A. Luna, J. Massoni, S. Nadot, S. Pamperl, C. Prieu, E. Reyes, P. dos Santos, K. M. Schoonderwoerd, S. Sontag, A. Soulebeau, Y. Staedler, G. F. Tschan, A. W.-S. Leung & J. Schönenberger, 2017. The ancestral flower of angiosperms and its early diversification. Nature Communications 8:16047, 10 pp.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sender, L. M., J. A. Doyle, U. Villanueva-Amadoz, D. Pons, J. B. Diez & J. Ferrer. 2016. First records of the angiosperm genus Sapindopsis Fontaine (Platanaceae) in western Eurasia from middle to latest Albian deposits of Spain. Review of Palaeobotany and Palynology 230: 10-21.CrossRefGoogle Scholar
  127. Singh, C. 1971. Lower Cretaceous microfloras of the Peace River area, northwestern Alberta. Research Council of Alberta Bulletin 28: 1-310.Google Scholar
  128. Smith, A. C. 1976. Studies of Pacific Island plants. XXXIII. The genus Ascarina (Chloranthaceae) in the southern Pacific. Journal of the Arnold Arboretum 57: 405-425.Google Scholar
  129. ---. 1981. Flora Vitiensis nova. A new flora of Fiji (Spermatophytes only) vol. 2. Pacific Tropical Botanical Garden, Lawai, Hawaii.Google Scholar
  130. Smith, S. Y. & R. A. Stockey. 2007. Pollen morphology and ultrastructure of Saururaceae. Grana 46: 250-267.CrossRefGoogle Scholar
  131. Soltis, D. E., P. S. Soltis, P. K. Endress & M. W. Chase. 2005. Phylogeny and evolution of angiosperms. Sinauer Associates, Sunderland, Mass.Google Scholar
  132. Soltis P. S., D. E. Soltis & M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402-404.CrossRefPubMedGoogle Scholar
  133. Springer, M. S., E. C. Teeling, O. Madsen, M. J. Stanhope & W. W. de Jong. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Sciences of the USA 98: 6241-6246.CrossRefPubMedGoogle Scholar
  134. Strasburger, E. 1902. Ein Beitrag zur Kenntniss von Ceratophyllum submersum und phylogenetische Erörterungen. Jahrbücher für Wissenschaftliche Botanik 37: 477-526.Google Scholar
  135. Sun, M., D. E. Soltis, P. S. Soltis, X. Zhu, J. G. Burleigh & Z. Chen. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution 83: 156-166.CrossRefPubMedGoogle Scholar
  136. Swamy, B. G. L. 1953. The morphology and relationships of the Chloranthaceae. Journal of the Arnold Arboretum 34: 375-408.Google Scholar
  137. Takahashi, M. 1995. Development of structure-less pollen wall in Ceratophyllum demersum L. (Ceratophyllaceae). Journal of Plant Research 108: 205-208.CrossRefGoogle Scholar
  138. Tanrikulu, S., J. A. Doyle & I. Delusina. 2017. Early Cretaceous (Albian) spores and pollen from the Glen Rose Formation of Texas and their significance for correlation of the Potomac Group. Palynology. DOI: https://doi.org/10.1080/01916122.2017.1374309.
  139. Taylor, D. W. & L. J. Hickey. 1992. Phylogenetic evidence for the herbaceous origin of angiosperms. Plant Systematics and Evolution 180: 137-156.CrossRefGoogle Scholar
  140. Thanikaimoni, G. 1985. Palynology and phylogeny, pp. 11-14 in van Bruggen, H. W. E., Monograph of the genus Aponogeton (Aponogetonaceae), Bibliotheca Botanica 137: 1-76.Google Scholar
  141. Todzia, C. A. 1988. Chloranthaceae: Hedyosmum. Flora Neotropica Monograph 48: 1-139.Google Scholar
  142. ---. 1993. Chloranthaceae. Pp. 281-287. In: K. Kubitzki, J. G. Rohwer & V. Bittrich (eds.), The families and genera of vascular plants, volume II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families. Springer-Verlag, Berlin.Google Scholar
  143. Tosaki, Y., H. Takahashi & S. S. Renner. 2001. Pollination of Sarcandra glabra (Chloranthaceae) in natural populations in Japan. Journal of Plant Research 114: 423-427.CrossRefGoogle Scholar
  144. Upchurch, G. R., Jr. 1984. Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. I. Zone I leaves. American Journal of Botany 71: 192-202.CrossRefGoogle Scholar
  145. --- & D. L. Dilcher. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. U. S. Geological Survey Bulletin 1915: 1-55.Google Scholar
  146. van der Hammen, T. & E. Gonzalez. 1960. Upper Pleistocene and Holocene climate and vegetation of the “Sabana de Bogotá” (Colombia, South America). Leidse Geologische Mededelingen 25: 261-315.Google Scholar
  147. von Balthazar, M. & P. K. Endress. 1999. Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Systematics and Evolution 218: 161-178.CrossRefGoogle Scholar
  148. Walker, J. W. & A. G. Walker. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Annals of the Missouri Botanical Garden 71: 464-521.CrossRefGoogle Scholar
  149. Wang, Y.-H., S.-B. Ma & M.-K. Cui. 1998. The characteristics of reproductive biology of Chloranthus holostagius. Journal of Yunnan University (Natural Sciences) 1998: S4.Google Scholar
  150. ---, K. Yang & S.-B. Ma. 1999. Reproductive biology of Chloranthus henryi (Chloranthaceae) in northeastern Yunnan. Acta Botanica Yunnanica 21: 218-224.Google Scholar
  151. Ward, J. V. 1986. Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa formations (Albian) of Kansas, U.S.A. Palaeontographica Abteilung B 202: 1-81.Google Scholar
  152. Whitehead, D. R. 1969. Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution 23: 28-35.CrossRefPubMedGoogle Scholar
  153. Wilde, V., Z. Kvaček & J. Bogner. 2005. Fossil leaves of the Araceae from the European Eocene and notes on other aroid fossils. International Journal of Plant Sciences 166: 157-183.CrossRefGoogle Scholar
  154. Yoo, M.-J., C. D. Bell, P. S. Soltis & D. E. Soltis. 2005. Divergence times and historical biogeography of Nymphaeales. Systematic Botany 30: 693-704.CrossRefGoogle Scholar
  155. Zeng, L., Q. Zhang, R. Sun, H. Kong, N. Zhang & H. Ma. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature Communications 5:4956, 12 pp.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zhang, L.-B. & S. Renner. 2003. The deepest splits in Chloranthaceae as resolved by chloroplast sequences. International Journal of Plant Sciences 164 (Supplement): S383-S392.CrossRefGoogle Scholar
  157. Zhang, N., L. Zeng, H. Shan & H. Ma. 2012. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytologist 195: 923–937.CrossRefPubMedGoogle Scholar
  158. Zhang, Q., A. Antonelli, T. S. Feild & H.-Z. Kong. 2011. Revisiting taxonomy, morphological evolution, and fossil calibration strategies in Chloranthaceae. Journal of Systematics and Evolution 49: 315-329.CrossRefGoogle Scholar
  159. ---, T. S. Feild & A. Antonelli. 2015. Assessing the impact of phylogenetic incongruence on taxonomy, floral evolution, biogeographical history, and phylogenetic diversity. American Journal of Botany 102: 566-580.Google Scholar

Copyright information

© The New York Botanical Garden 2018

Authors and Affiliations

  1. 1.Department of Evolution and EcologyUniversity of CaliforniaDavisUSA
  2. 2.Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland

Personalised recommendations