Advertisement

The Botanical Review

, Volume 82, Issue 4, pp 371–406 | Cite as

Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance

  • Niramaya S. Muchate
  • Ganesh C. Nikalje
  • Nilima S. Rajurkar
  • P. Suprasanna
  • Tukaram D. NikamEmail author
Article

Abstract

Salinity is an important abiotic environmental stress factor threatening agricultural productivity throughout the world. The detrimental effects of salinity stress are observed at cellular, organ and whole plant level at osmotic phase (early/short-term response) and ionic phase (late/long-term response). High salinity exerts its negative impact on major plant processes such as disrupting the osmotic and ionic equilibrium, protein synthesis, photosynthesis, energy, and lipid metabolism. To adapt and tolerate salt stress, plants have evolved physiological and biochemical mechanisms orchestrated by multiple biochemical pathways of ion homeostasis, osmolytes synthesis, ROS scavenging, and hormonal balance. At the molecular level, such adaptation involves activation of cascade(s) of gene modulations and synthesis of defense metabolites. In recent years, several candidate genes have been identified and employed to facilitate genetic engineering efforts to improve salt tolerance in crop plants. However, there is a further need of improvement for successful release of salt tolerant cultivars at the field level. In this article we present the physiological, biochemical and molecular signatures of plant responses to salinity, and outline their use in genetic engineering to improve salt stress tolerance.

Keywords

Salinity Osmotic and ionic stress Stress tolerance miRNA Transgenic plants Bioengineering 

Notes

Acknowledgments

Muchate NS is thankful to Department of Science and technology, Government of India for Inspire Fellowship.

References

  1. Abdula SE, Lee HJ, Ryu H, Kang KK, Nou I, Sorrells ME, Cho YG (2016) over expression of BrCIPK1 Gene enhances abiotic stress tolerance by increasing proline biosynthesis in Rice. Plant Mol Biol Rep (2016) 34: 501. doi: 10.1007/s11105-015-0939-x CrossRefGoogle Scholar
  2. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant physiology 131:1748–1755PubMedPubMedCentralCrossRefGoogle Scholar
  3. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94PubMedCrossRefGoogle Scholar
  4. Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123PubMedCrossRefGoogle Scholar
  5. Akram MS and Ashraf M (2011) Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). J. Plant Nutr 34: 1041–1057CrossRefGoogle Scholar
  6. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornick A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K(+ ) specificity in the presence of NaCl. Plant Physiol. 158:1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 19(3):307–321PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J. Exp. Bot. 60:3491–3502PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ardie S, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep. 29: 865–874PubMedCrossRefGoogle Scholar
  10. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199: 361–376CrossRefGoogle Scholar
  11. Ashraf M and Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances 27:744–752PubMedCrossRefGoogle Scholar
  12. Ashraf M and Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ and Expt Bot 59:206–216CrossRefGoogle Scholar
  13. Ashraf M and Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3–16CrossRefGoogle Scholar
  14. Ashraf M and Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190CrossRefGoogle Scholar
  15. Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ − ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotech. J. 10:453–464CrossRefGoogle Scholar
  16. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal 62: 250–264PubMedCrossRefGoogle Scholar
  17. Bao AK, Wang SM, Wu GO, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+ − PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 76: 232–240CrossRefGoogle Scholar
  18. Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65:1241–1257PubMedCrossRefGoogle Scholar
  19. Cabello JV, Lodeyro AF, Zurbriggen MD (2014) Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotech 26: 62–70CrossRefGoogle Scholar
  20. Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009)Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, 28(2): 187–192CrossRefGoogle Scholar
  21. Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cao Y-R, Chen S-Y, Zhang J-S. (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signaling & Behavior. 3:761–763.CrossRefGoogle Scholar
  23. Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants. J Lipid Res 53:215–226Google Scholar
  24. Chaudhary A, Singh A, Sengar RS (2015) Antioxidant activity in rice under salinity stress: an overview. Plant Archives 15(1):7–13Google Scholar
  25. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Bot 103: 551–560CrossRefGoogle Scholar
  26. Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research 57: 49–104CrossRefGoogle Scholar
  27. Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA ofPopulus euphratica; a hybrid in response to increasing soil NaCl. Trees—Structure and Function. 15(3) 186–194CrossRefGoogle Scholar
  28. Chen M-X, Lung S-C, Du Z-Y, Chye M-L (2014) Engineering plants to tolerate abiotic stresses. Biocatalysis and agricultural biotechnology 3:81–87CrossRefGoogle Scholar
  29. Chen Y, Zong J, Tan Z, Li L, Hu B, Chen C, Chen J, Liu J (2015a) Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Plant Physiol. Biochem. 89:44–52PubMedCrossRefGoogle Scholar
  30. Cheong YH, Sung SJ, Kim B, Gi, Pandey GK, Cho JS, Kim KN, et.al (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells 29:159–165Google Scholar
  31. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci. 45:437–448CrossRefGoogle Scholar
  32. Chu X, Wang C, Chen X, Lu W, Li H, Wang X, et al. (2015) The cotton WRKY Gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana Benthamiana. PLoS ONE 10(11): e0143022.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126: 480–484PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cosentino C, Di Silvestre D, Fischer-Schliebs E, Homann U, De Palma A, Comunian C, Mauri PL, Thiel G (2013) Proteomic analysis of Mesembryanthemum crystallinum leaf microsomal fractions finds an imbalance in V-ATPase stoichiometry during the salt-induced transition from C3 to CAM. Biochem J. 450(2):407–415PubMedCrossRefGoogle Scholar
  35. Cramer GR and Quarrie SA (2002) Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity, Functional Plant Biology. 29(1): 111–115CrossRefGoogle Scholar
  36. Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Exp Agric. 41:211–217CrossRefGoogle Scholar
  37. Darwish E, Testerink C, Khalil M, El-Shihy O, Munnik T (2009) Phospholipid signaling responses in salt-stressed rice leaves. Plant Cell Physiol. 50: 986–997PubMedPubMedCentralCrossRefGoogle Scholar
  38. Das AB (2013) Bioprospecting and genetic engineering of Mangrove genes to enhance salinity tolerance in crop plants, SM Jain and S Dutta Gupta (eds.), Biotechnology of Neglected and Underutilized Crops, Springer 385–456Google Scholar
  39. Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett. 580: 3980–3988PubMedCrossRefGoogle Scholar
  40. Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70Google Scholar
  41. Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203–206PubMedCrossRefGoogle Scholar
  42. de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros JV, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56(1):87–94Google Scholar
  43. De Oliveira BDO, Nara LMA, Eneas G-F (2013) Comparison between the water and salt stress effects on plant growth and development. Responses of organisms to water stress 4: 67–94Google Scholar
  44. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G (2013) TaCIPK29, a CBL-interacting protein kinase Gene from wheat, confers salt stress tolerance in transgenic tobacco. Plos One 8(7): e69881.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Diedhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biology 8–49Google Scholar
  46. Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161:1217–1228PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ellouzi H, Hamed KB, Hernandez I, Cela J, Muller M, Magne C, et al. (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240:1299–1317PubMedCrossRefGoogle Scholar
  48. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T., Shibahara T., Inanaga S., Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  49. Espinosa-Ruiz A, Belles JM, Serrano R, Culianez-Macla V (1999) Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J. 20:529–539PubMedCrossRefGoogle Scholar
  50. Flowers TJ and Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist. 179: 945–963PubMedCrossRefGoogle Scholar
  51. Flowers TJ and Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manage 78:15–24CrossRefGoogle Scholar
  52. Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+ − PPase gene from Thellungiella Halophila and its heterologous expression to improve tobacco salt tolerance. J. Exp. Bot. 57:3259–3270PubMedCrossRefGoogle Scholar
  53. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) Osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports 38: 237–242PubMedCrossRefGoogle Scholar
  54. Gill SS and Tuteja (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol and biochem. 48: 909–930CrossRefGoogle Scholar
  55. Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 6:(11)1746–1751CrossRefGoogle Scholar
  56. Gorham J, Bridges J, Dubcovsky J, Dvorak J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K+/Na + discrimination in wheat. New Phytol 137:109–116CrossRefGoogle Scholar
  57. Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na+ /H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol. Biol. Rep. 38:1889–1899PubMedCrossRefGoogle Scholar
  58. Guan Q, Wang Z, Wang X, Takano T, Liu SA (2015) Peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. J. Plant Physiol 175:183–191CrossRefGoogle Scholar
  59. Guo YS, Wan-Ke Z, Dong-Qing Y, Bao-Xing D, Jin-Song Z, Shou-Yi C (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Bota. Sinica 44: 956–962Google Scholar
  60. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu J-K (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  61. Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+ − pyrophos-phatase gene, SsVP, from the halophyte Suaeda Salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol. 60: 41–50PubMedCrossRefGoogle Scholar
  62. Gupta B and Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. of Genomics 1–19Google Scholar
  63. He C, Yang A, Zhang W, Gao Q, Zhang J (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycine betaine synthesis. Plant Cell, Tissue and Organ Culture 101:65–78CrossRefGoogle Scholar
  64. Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O·-2 /H2O2 production in the apoplast of pea leaves. Its relationwith salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817–831Google Scholar
  65. Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany 124: 39–63CrossRefGoogle Scholar
  66. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1 pyrroline-5-carboxylase synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122: 1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot 58:3273–3283PubMedCrossRefGoogle Scholar
  68. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefGoogle Scholar
  69. Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+ − pyrophosphatase and a B subunit of H+ − ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss. Org. Cult. 108:63–71CrossRefGoogle Scholar
  70. Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development 23:1805–1817PubMedPubMedCentralCrossRefGoogle Scholar
  71. Huertas R, Olías R, Eljakaoui Z, Gálvez F J, Li J, De Morales PA, Belver A, Rodriguez-Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35, 1467–1482. doi: 10.1111/j.1365-3040.2012.02504.x PubMedCrossRefGoogle Scholar
  72. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in Plant Sci. 6:375CrossRefGoogle Scholar
  73. Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7(3):106–111PubMedCrossRefGoogle Scholar
  74. James RA, Blake C, Byrt CS, Munns R (2011).Majorgenesfor Na+ exclusion. Nax1 and Nax2 (wheat HKT1;4 and HKT1;5),decrease Na+ accumulation in bread wheat leave sunder saline and waterlogged conditions. J. Exp.Bot. 62: 2939–2947PubMedCrossRefGoogle Scholar
  75. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6- phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, et al. (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant cell, Tissue and Organ Culture 85:151–160CrossRefGoogle Scholar
  77. Jha A, Joshi M, Yadav N, Agarwal P, Jha B (2011a) Cloning and characterization of the Salicornia Brachiata Na+ /H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol. Bio. Rep. 38:1965–1973CrossRefGoogle Scholar
  78. Jha B, Sharma A, Mishra A (2011b) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia Brachiata in tobacco for salt tolerance. Mol. Bio. Rep. 38: 4823–4832CrossRefGoogle Scholar
  79. Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8: e71136.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal Experimental Botany 53: 2201–2206CrossRefGoogle Scholar
  81. Jiang Y and Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105PubMedCrossRefGoogle Scholar
  82. Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signaling & Behavior 5(7):792–795CrossRefGoogle Scholar
  83. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defiance. J. of Genetics 85: 1–14CrossRefGoogle Scholar
  84. Johnson R. R., Wagner R. L., Verhey S. D., Walker-Simmons M. K. (2002)The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology, vol. 130(2) 837–846CrossRefGoogle Scholar
  85. Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol. Biochem. 65: 61–66PubMedCrossRefGoogle Scholar
  86. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146: 623–635PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17:287–291PubMedCrossRefGoogle Scholar
  88. Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329PubMedCrossRefGoogle Scholar
  89. Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science 20(4):1360–1385CrossRefGoogle Scholar
  90. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants, Biochim. Biophys. Acta, 1819(2): 137–148PubMedCrossRefGoogle Scholar
  91. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J. 23(2):267–278PubMedCrossRefGoogle Scholar
  92. Kim JY , Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol. 51(6):1079–1083PubMedCrossRefGoogle Scholar
  93. Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membrane and vacuolar type Na+ /K+ antiporters of an alkaline salt tolerant monocot Puccinellia tenuiflora. J. Plant Res. 125:587–594PubMedCrossRefGoogle Scholar
  94. Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, et al.(2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell and Environment 34:1291–1303PubMedCrossRefGoogle Scholar
  95. Kumar V and Jain M (2015). The CRISPR-Cas system for plant genome editing: advances and opportunities. J. Exp. Bot. 66: 47–57PubMedCrossRefGoogle Scholar
  96. Kumari A, Das P, Parida AK and Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 6:537. doi:  10.3389/fpls.2015.00537 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kurusu T, Kuchitsu K and Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front. Plant Sci.6:427PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lan T, Duan Y, Wang B, Zhou Y, Wu W (2011) Molecular cloning and functional characterization of a Na+ /H+ antiporter gene from halophyte Spartina anglica. Turk. J. 35: 535–543Google Scholar
  99. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. The Plant Journal 32:139–149PubMedCrossRefGoogle Scholar
  100. Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B et al. (2010). The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 61:495–506PubMedCrossRefGoogle Scholar
  101. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 234:1007–1018PubMedCrossRefGoogle Scholar
  102. Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants.Cell Res. 18(10):1047–1060.PubMedCrossRefGoogle Scholar
  103. Liu W, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of twoHKT1homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol. 127: 283–294PubMedPubMedCentralCrossRefGoogle Scholar
  104. Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008a) Transgenic salt tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant, Cell & Environment 31:1325–1334CrossRefGoogle Scholar
  105. Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a vacuolar H+ − pyrophosphatase gene from the halophyte Suaeda Corniculata whose heterologous overexpression improves salt, saline–alkali and drought tolerance in Arabidopsis. J. Integ. Plant Biol. 53:731–742Google Scholar
  106. Liu L, Fan XD, Wang FW, Wang N, Dong YY, Liu XM, Yang J, Wang YF, Li HY (2013) Coexpression of ScNHX1 and ScVP in transgenic hybrids improves salt and saline–alkali tolerance in alfalfa (Medicago sativa L.). J. Plant Growth Reg. 32:1–8CrossRefGoogle Scholar
  107. Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+ /H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.). Indian J. Biochem. Biophy. 51:58–65Google Scholar
  108. Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological andgrowth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult. 102:17–25CrossRefGoogle Scholar
  109. Lokhande VH, Mulye K, Patkar R, Nikam TD, Suprasanna P (2013) Biochemical and physiological adaptations of the halophyte Sesuvium portulacastrum (L.) L.(Aizoaceae) to salinity. Arch. Agric. Soil Sci. 59:1373–1391Google Scholar
  110. Lu ZQ, Liu D, Liu SK (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis, Plant Cell Rep. 26:1909–1917PubMedCrossRefGoogle Scholar
  111. Luo MB and Liu F (2011) Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva Prolifera. J. of Expt Marine Bio and Ecology. 409:223–228CrossRefGoogle Scholar
  112. Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol. 166:385–394PubMedCrossRefGoogle Scholar
  113. Lv SL, Zhang K, Gao Q, Lian L, Song Y, Zhang, J (2008) Overexpression of an H+ − PPase gene from Thellungiella Halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol. 49:1150–1164PubMedCrossRefGoogle Scholar
  114. Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, et al. (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J. Proteom. 75:1529–1546CrossRefGoogle Scholar
  115. Macovei A, Gill SS, Tuteja N (2012) MicroRNAs as promising tools for improving stress tolerance in rice. Plant Signaling & Behavior 7:10, 1296–1301CrossRefGoogle Scholar
  116. Mahajan S and Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444:139–158PubMedCrossRefGoogle Scholar
  117. Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys. 471(2):146–158PubMedCrossRefGoogle Scholar
  118. Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697PubMedCrossRefGoogle Scholar
  119. Mantri N, Patade V, Suprasanna P, Ford R, Pang EP (2012) Abiotic Stress Responses in Plants: Present and Future, Ahmad and M.N.V. Prasad (eds.). Metabolism, Productivity and Sustainability 1–19Google Scholar
  120. Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics. 11:445–465PubMedCrossRefGoogle Scholar
  121. Maris PA and Blumwald E (2007) Na+ transport in plants. FEBS letters 581: 2247–2254CrossRefGoogle Scholar
  122. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanismsofabioticstresstolerancethattranslatetocropyieldstability. Nat. Rev.Genet. 16,237–251Google Scholar
  123. Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, et al. (2003) NDP kinase 2 interacts with two oxidative stress activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America 100:358–363PubMedCrossRefGoogle Scholar
  124. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation, Flora 224: 96–105CrossRefGoogle Scholar
  125. Munns (2005) Genes and salt tolerance: bringing them together. New Phytologist. 167: 645–663PubMedCrossRefGoogle Scholar
  126. Munns R and Tester M (2008) Mechanisms of salinity tolerance. Annu. Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  127. Nagamiya K, Motohashi T, Nakao K, Prodhan S, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, kat E. Plant Biotechnology Reports 1: 49–55CrossRefGoogle Scholar
  128. Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol Biophys. 444:139–158Google Scholar
  129. Nouri MZ, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int. J. Mol. Sci. 20: 392–320Google Scholar
  130. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology 138(1):341–351PubMedPubMedCentralCrossRefGoogle Scholar
  131. Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656PubMedCrossRefGoogle Scholar
  132. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol. 151: 210–222PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+ /H+ antiporter gene from Atriplex Gmelini confers salt tolerance to rice. FEBS Letters 532: 279–282PubMedCrossRefGoogle Scholar
  134. Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol. Plant 138, 10–21PubMedCrossRefGoogle Scholar
  135. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Envir. Safety 60:324–349CrossRefGoogle Scholar
  136. Park H-Y, Seok H-Y, Park B-K, Kim S-H, Goh C-H, Lee B-H, Lee C-H, Moon Y-H (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem. Biophys. Res. Comm. 375:80–85PubMedCrossRefGoogle Scholar
  137. Peleg Z, Apse MP and E Blumwald (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Advances in Botanical Research 57: 405–443CrossRefGoogle Scholar
  138. Peng J, Li Z, Wen X, Li W, Shi H, Yang L, et al. (2014) Saltinduced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 10:e1004664PubMedPubMedCentralCrossRefGoogle Scholar
  139. Plett D, Safwat G, Gilliham M, Møller IS, Roy S, Shirley N, et al (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5:e12571PubMedPubMedCentralCrossRefGoogle Scholar
  140. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+ /H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep. 26: 1663–1672PubMedCrossRefGoogle Scholar
  141. Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104:202–208PubMedCrossRefGoogle Scholar
  142. Rahdari P and Seyed MH (2011): Salinity stress: a review. Tech J Engin & App Sci 1 (3): 63–66Google Scholar
  143. Rai AN, Sreenath T, Rao, KV, Vinay Kumar, Suprasanna P (2016) Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. Plant Mol. Biol. 90(4): 375–387PubMedCrossRefGoogle Scholar
  144. Ramakrishna A and Gokare AR (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior 6: (11) 1720–1731CrossRefGoogle Scholar
  145. Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz G, Saeed N (2014) Cloning and characterization of Na+ /H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol. Biol. Rep. 41:1669–1682PubMedCrossRefGoogle Scholar
  146. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants, Current Opinion in Biotechnology 26:115–124PubMedCrossRefGoogle Scholar
  147. Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, Bolarin MC (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+ /Na+ selectivity under salt stress. Plant Cell Environ. 24:875–880CrossRefGoogle Scholar
  148. Ryu H, Cho Y-G (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155Google Scholar
  149. Sablok G, Srivastva AK, Suprasanna P, Baev V and Ralph PJ (2015) isomiRs: increasing evidences of isomiRs complexity in plant stress functional biology. Front. Plant Sci. 6:949Google Scholar
  150. Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany 103: 609–623PubMedCrossRefGoogle Scholar
  151. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plant. Plant Cell Environ 25:163–171Google Scholar
  152. Schaeffer HJ, Forstheoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Molecular Biology 28:205–218PubMedCrossRefGoogle Scholar
  153. Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR et al. (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131PubMedPubMedCentralCrossRefGoogle Scholar
  154. Seki M, Ishida J, Narusaka M, et al. (2002) Monitoring the expression pattern of ca. 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Functional and Integrative Genomics 2, 282–291PubMedCrossRefGoogle Scholar
  155. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Bot. 112:1209–1221CrossRefGoogle Scholar
  156. Shekhawat UKS and Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS ONE. 8(10): e75506.Google Scholar
  157. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY. (2003). Characterization of a DRE-binding transcription factor from a halophyte. Atriplex hortensis. Theoretical and Applied Genetics 107, 155–161PubMedCrossRefGoogle Scholar
  158. Shi H and Zhu J-K (2002) Regulation of expression of the vacuolar Na+ /H+ antiporter gene AtNHX1 by salt stress and ABA. Plant. Mol. Biol. 50: 543–550PubMedCrossRefGoogle Scholar
  159. Shi H, Ishitani M, Kim CS, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 97:6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  160. Shi H, Lee B-h, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21: 81–85PubMedCrossRefGoogle Scholar
  161. Shinozaki K and Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  162. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Frontiers in Plant Science.7:817PubMedPubMedCentralCrossRefGoogle Scholar
  163. Silva P, Geros H (2009) Regulation by salt of vacuolar H+ -ATPase and H+ -pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726Google Scholar
  164. Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547: 119–125PubMedCrossRefGoogle Scholar
  165. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180PubMedCrossRefGoogle Scholar
  166. Slama I, Abdelly C, Bouchereau A, Flowers T, Savour A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann of Bot 1–15Google Scholar
  167. Sridha S and Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses inArabidopsis. Plant J. 46:124–133PubMedCrossRefGoogle Scholar
  168. Srivastava AK and Suprasanna P (2015) Redox regulated mechanisms: Implications for enhancing plant stress tolerance and crop yield. In: Giridhar Kumar Pandey (Eds.), Elucidation of Abiotic Stress Signaling in Plants. Springer, Netherland 191–205CrossRefGoogle Scholar
  169. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  170. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948Google Scholar
  171. Sunkar R and Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis, Plant Cell. 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  172. Suprasanna P, Teixeira da Silva JA and Bapat VA (2005) Plant abiotic stress, sugars and transgenics: a perspective. In: Floriculture, ornamental and plant biotechnology: advances and topical issues; Teixeira da Silva JA (Ed). Global Science Publishers, London, UK. 86–93Google Scholar
  173. Suprasanna P, Rai AN, HimaKumari P, Kumar SA and Kavi Kishor PB (2014) Modulation of proline: implications in plant stress tolerance and development. Plant Adaptation to Environmental Change (eds N.A. Anjum, S.S. Gill and R. Gill) CABI Publishers, UK 68–93Google Scholar
  174. Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress tolerance. In Osmolytes and plants acclimation to changing environment: emerging omics technologies; Iqbal N, Nazar R, Khan NA (Ed). Springer, India. 1–12CrossRefGoogle Scholar
  175. Szabados L and Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefGoogle Scholar
  176. Takahashi R, Nishio T, Ichizen N, Takano T (2007) Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotech. Lett. 29:501–506CrossRefGoogle Scholar
  177. Tao H, Yi H, Hu L, Fu J (2013) Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. J. AMER. SOC. HORT. SCI. 138(5):350–357Google Scholar
  178. Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang J-S (2015b) The role of ethylene in plants under salinity stress. Frontiers in Plant Science 6 (1059): 1–12Google Scholar
  179. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell. 15:141–152PubMedCrossRefGoogle Scholar
  180. Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia Brachiata. Plant Cell Physiol 55: 201–217PubMedCrossRefGoogle Scholar
  181. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA(2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789PubMedCrossRefGoogle Scholar
  182. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 58: 778–790PubMedCrossRefGoogle Scholar
  183. Tripathi P, Rabara RC, Rushton PJ (2014) A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta. 239(2):255–266PubMedCrossRefGoogle Scholar
  184. Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. AJCS. 6(9):1337–1348Google Scholar
  185. Tuteja N (2007a) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–138Google Scholar
  186. Tuteja N (2007b) Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior 2(3) 135–138Google Scholar
  187. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S 97(21):11632–11637CrossRefGoogle Scholar
  188. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae Plant Physiol. 122:1249–1259PubMedPubMedCentralCrossRefGoogle Scholar
  189. Vanderauwera S, Vandenbroucke K, Inze A, van de Cotte B, Muhlenbock P, De Rycke R., et al. (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109:20113–20118PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang X (2004) Lipid signaling. Curr. Opin. Plant Biol. 7: 329–336PubMedCrossRefGoogle Scholar
  191. Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 167: 671–677CrossRefGoogle Scholar
  192. Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, et al.(2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology 65: 733–746PubMedCrossRefGoogle Scholar
  193. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. - plant Mol. Biol. 67: 589–602Google Scholar
  194. Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol. Biol. Rep. 37:1119–1124PubMedCrossRefGoogle Scholar
  195. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+ /H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4122–4813Google Scholar
  196. Wang Rk, Ling LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology 79(1):123–135.PubMedCrossRefGoogle Scholar
  197. Wang H, Wang H Shao H, Xiaoli T (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016; 7: 67.Google Scholar
  198. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The crop j. 4: 162–176.CrossRefGoogle Scholar
  199. Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+ /H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella Halophila. Plant Mol. Biol. Rep. 27:1–12CrossRefGoogle Scholar
  200. Xiang Y, Tang N, Du H, Ye HY, Xiong LZH (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148:1938–1952PubMedPubMedCentralCrossRefGoogle Scholar
  201. Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, et al. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J. 66: 280–292PubMedCrossRefGoogle Scholar
  202. Xiong L and Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell 5: 745–759CrossRefGoogle Scholar
  203. Xiong L and Zhu J-K (2003) Regulation of abscisic acid biosynthe sis. Plant Physiol. 133:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  204. Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. The Plant Cell S165–S183Google Scholar
  205. Xu D-Q, Huang J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Zhang H-S (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters 582: 1037–1043PubMedCrossRefGoogle Scholar
  206. Xu J, Tian YS, Peng RH, Xiong AS, Zh B, Jin XF, et al. (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260PubMedCrossRefGoogle Scholar
  207. Xu GY, Pedro SCFR, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1): 47–59.PubMedCrossRefGoogle Scholar
  208. Xue ZY, Zhi DY, Xue GP, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+ /H+ antiporter gene with improved grain yield in saline soils in the field and a reduced level of leaf Na+ . Plant Sci. 167:849–859CrossRefGoogle Scholar
  209. Yadav N, Shukla P, Jha A, Agarwal P, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia Brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 12:1–18CrossRefGoogle Scholar
  210. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2 + − and pHdependent manner. Proc Natl Acad Sci USA. 102:16107–16112PubMedPubMedCentralCrossRefGoogle Scholar
  211. Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 63(7): 2541–2556.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Yang Y, Tang R-J, Jiang C-M, Li B, Kang T, Liu H, Zhao N, Ma X-J, Yang L, Chen SL, Zhang HX (2015) Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotech. J. 1–12Google Scholar
  213. Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+ − pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol. Biol. Rep. 39:7989–7996PubMedCrossRefGoogle Scholar
  214. Ying S, Zhang DF, Li HY, Liu YH, Shi YS, Song YC, et al. (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Reports 30(9):1683–1699PubMedCrossRefGoogle Scholar
  215. Yousuf PY, Ahmad A, Ganie AH, Iqbal M (2016) Salt stress-induced modulations in the shoot proteome of Brassica juncea genotypes. Environ Sci Pollut Res 23(3):2391–2401CrossRefGoogle Scholar
  216. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F et al. (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188:762–773PubMedCrossRefGoogle Scholar
  217. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 1–13Google Scholar
  218. Zhang HX and Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19: 765–768PubMedCrossRefGoogle Scholar
  219. Zhang J, Jia W, Yang Y, Ismail AM (2006a) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research 97:111–119CrossRefGoogle Scholar
  220. Zhang Y, Yang J, Lu S, Cai J, Guo Z (2008) Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul 27:151–158CrossRefGoogle Scholar
  221. Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Molecular Breeding 23: 289–298CrossRefGoogle Scholar
  222. Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLOS ONEGoogle Scholar
  223. Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, et al. (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Molecular Biology. 77(1–2):17–31PubMedCrossRefGoogle Scholar
  224. Zhang B, Liu K, Zheng Y, Wang Y. Wang J. Liao H (2013) Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. Int. J. Mol. Sci., 14: 7032–7047Google Scholar
  225. Zhao XC and Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylenereceptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192PubMedCrossRefGoogle Scholar
  226. Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+ /H+ antiporter gene from Suaeda Salsa. J. Plant Res. 119:95–104PubMedCrossRefGoogle Scholar
  227. Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G. (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol. 164: 1068–1076PubMedCrossRefGoogle Scholar
  228. Zhonghua C, Tracey AC, Meixue Z, Amanda T, Naidu BP, Sergey S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of experimental botany 58: 4245–4255CrossRefGoogle Scholar
  229. Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, et al. (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett. 580:1239–1250PubMedCrossRefGoogle Scholar
  230. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 Gene alters plant development and enhances salt and drought tolerance in transgenic creeping Bentgrass. Plant Physiology. 161(3): 1375–1391PubMedPubMedCentralCrossRefGoogle Scholar
  231. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci. 6(2):66–71PubMedCrossRefGoogle Scholar
  232. Zhu JK (2002) Review salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  233. Zhu JK (2003) Review regulation of ion homeostasis under salt stress.Curr Opin Plant Biol. 6(5):441–445CrossRefGoogle Scholar
  234. Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, et al (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2016

Authors and Affiliations

  • Niramaya S. Muchate
    • 1
  • Ganesh C. Nikalje
    • 3
    • 4
  • Nilima S. Rajurkar
    • 2
  • P. Suprasanna
    • 3
  • Tukaram D. Nikam
    • 4
    Email author
  1. 1.Department of Environmental ScienceSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of ChemistrySavitribai Phule Pune UniversityPuneIndia
  3. 3.Plant Stress Physiology & Biotechnology Section, Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Department of BotanySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations