The Botanical Review

, Volume 82, Issue 1, pp 1–23

Oak Decline as Illustrated Through Plant–Climate Interactions Near the Northern Edge of Species Range

  • Samuli Helama
  • Kristina Sohar
  • Alar Läänelaid
  • Hanna M. Mäkelä
  • Juha Raisio
Article

Abstract

This paper investigates historical growth and climate records among the oak sites representing the northern edge of species range in northernmost Europe (Finland). This is to characterize plant–climate interactions for a multitude of sites where oak decline has recently been observed and understand this most recent decline in the context of the past decline studies elsewhere. Further, our paper demonstrates the procedures the tree-ring data can be used in isolating those factors significantly contributing to decline. Our findings point towards complex tree mortality dynamics. Compared to oaks that remain healthy, the declining and dead oaks represent the trees clearly having suffered from competition and edaphic position within their site. This was indicated by their reduced growth rates and more drastic growth disturbance, with indications of reduced resilience. Growth of these trees was also deteriorated by cold soil temperatures during the dormancy in addition to summer droughts. By contrast, the growth of healthy oaks has been notably ameliorated by springtime soil warming over the past decades. The results demonstrate the climatic determinants for observed decline in the northern oak sites, which may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, although their habitats are not normally considered water-limited.

Keywords

Climate change Climate impacts Drought Drought stress Mortality Plant–climate interactions Tree death 

Literature Cited

  1. Ahti, T., L. Hämet-Ahti & J. Jalas. 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 3: 169–211.Google Scholar
  2. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zhangm, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci & N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.CrossRefGoogle Scholar
  3. Anderegg, W. R., J. A. Berry, D. D. Smith, J. S. Sperry, L. D. Anderegg & C. B. Field. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences 109: 233–237.CrossRefGoogle Scholar
  4. Andersson, M., P. Milberg & K.-O. Bergman. 2011. Low pre-death growth rates of oak (Quercus robur L.) - Is oak death a long-term process induced by dry years? Annals of Forest Science 68: 159–168.CrossRefGoogle Scholar
  5. Aniol, R. W. 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53.Google Scholar
  6. Axelrod, D. I. 1983. Biogeography of oaks in the arcto-tertiary province. Annals of the Missouri Botanical Garden 70: 629–657.CrossRefGoogle Scholar
  7. Barklund, P. & K. Wahlström. 1998. Death of oaks in Sweden since 1987. Pp 193. In: T. L. Cech, G. Hartmann, & C. Tomiczek (eds). Disease/environment interactions in forest decline. Federal Forest Research Center, Vienna.Google Scholar
  8. Barsoum, N., E. L. Eaton, T. Levanič, J. Pargade, X. Bonnart & J. I. L. Morison. 2015. Climatic drivers of oak growth over the past one hundred years in mixed and monoculture stands in southern England and northern France. European Journal of Forest Research 134: 33–51.CrossRefGoogle Scholar
  9. Bednarz, Z. & J. Ptak. 1990. The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepolomice forest near Cracow, Southern Poland. Tree-Ring Bulletin 50: 1–10.Google Scholar
  10. Bigler, C., O. U. Bräker, H. Bugmann, M. Dobbertin & A. Rigling. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9: 330–343.CrossRefGoogle Scholar
  11. Breshears, D. D., N. S. Cobb, P. M. Rich, K. P. Price, C. D. Allen, R. G. Balice, W. H. Romme, J. H. Kastens, M. L. Floyd, J. Belnap, J. J. Anderson, O. B. Myers & C. W. Clifton. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences 102: 15144–15148.CrossRefGoogle Scholar
  12. Briffa, K. & P. D. Jones. 1990. Basic chronology statistics and assessment. Pp 137–152. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.Google Scholar
  13. Camarero, J. J., A. Gazol, G. Sangüesa-Barreda, J. Oliva & S. M. Vicente-Serrano. 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. Journal of Ecology 103: 44–57.CrossRefGoogle Scholar
  14. Carnicer, J., M. Coll, M. Ninyerola, X. Pons, G. Sánchez & J. Peñuelas. 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences 108: 1474–1478.CrossRefGoogle Scholar
  15. Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala & R. Valentini. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.CrossRefPubMedGoogle Scholar
  16. Cook, E. R. & K. Peters. 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45–53.Google Scholar
  17. ———, & S. M. Zedaker. 1992. The dendroecology of red spruce decline. Ecological Studies 96:192–231.Google Scholar
  18. ———, K. Briffa, S. Shiyatov & V. Mazepa. 1990a. Tree-Ring Standardization and Growth-Trend Estimation. Pp 104–123. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  19. ———, S. Shiyatov & V. Mazepa. 1990b. Estimation of the mean chronology. Pp 123–132. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  20. Dakos, V., S. R. Carpenter, W. A. Brock, A. M. Ellison, V. Guttal, A. R. Ives, S. Kéfi, V. Livina, D. A. Seekell, E. H. van Nes & M. Scheffer. 2012a. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7: e41010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. ———, E. H. Van Nes, P. D’Odorico & M. Scheffer. 2012b. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93: 264–271.CrossRefPubMedGoogle Scholar
  22. Dobbertin, M. 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research 124: 319–333.CrossRefGoogle Scholar
  23. Drobyshev, I., H. Linderson & K. Sonesson. 2007. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108.CrossRefGoogle Scholar
  24. ———, ———, ———, M. Niklasson, O. Eggertsson, H. Linderson & K. Sonesson. 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65: 1–14.CrossRefGoogle Scholar
  25. Ducousso, A. & S. Bordacs. 2004. EUFORGEN Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  26. Ferris, C., R. A. King, R. Väinölä & G. M. Hewitt. 1998. Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80: 584–593.CrossRefPubMedGoogle Scholar
  27. Fink, A. H., T. Bruecher, A. Krueger, G. C. Leckebusch, J. G. Pinto & U. Ulbrich. 2004. The 2003 European summer heatwaves and drought — synoptic diagnosis and impacts. Weather 59: 209–216.CrossRefGoogle Scholar
  28. Führer, E. 1998. Oak decline in central Europe: a Synopsis of Hypotheses. Pp. 7–24 In: M. L. McManus & A. M. Liebhold AM (eds.), Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Gen. Technical Report, NE-247, Radnor, PA.Google Scholar
  29. Fritts, H. C. 1976. Tree rings and climate. Academic, London, UK.Google Scholar
  30. Gibbs, J. N. & B. J. W. Greig. 1997. Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70: 399–406.CrossRefGoogle Scholar
  31. Hartmann, G. & R. Blank. 1992. Winterfrost, Kahlfraß und Prachtkäferbefall als Faktoren im Ursachenkomplex des Eichensterbens in Norddeutschland. Summary in English: winter frost, insect defoliation and Agrilus biguttatus Fabr. as causal factors of oak decline in northern Germany. Forst und Holz 47: 443–452.Google Scholar
  32. ———, ——— & S. Lewark. 1989. Eichensterben in Norddeutschland – Verbreitung, Schadbilder, mögliche Ursachen. Summary in English: oak decline in Northern Germany. Distribution, symptoms, probable causes. Forst und Holz 44: 475–487.Google Scholar
  33. Hicke, J. A. & M. J. B. Zeppel. 2013. Climate-driven tree mortality: insights from the piñon pine die-off in the United States. New Phytologist 200: 301–303.CrossRefPubMedGoogle Scholar
  34. Hilasvuori, E. & F. Berninger. 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiology 30: 636–647.CrossRefPubMedGoogle Scholar
  35. Helama, S., A. Läänelaid, J. Raisio, H. M. Mäkelä, E. Hilasvuori, H. Jungner & E. Sonninen. 2014. Oak decline analyzed using intraannual radial growth indices, δ13C series and climate data from a rural hemiboreal landscape in southwesternmost Finland. Environmental Monitoring and Assessment 186: 4697–4708.CrossRefPubMedGoogle Scholar
  36. ———, ———, ——— & H. Tuomenvirta. 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant and Soil 319: 163–174.CrossRefGoogle Scholar
  37. ———, ———, ——— & ———. 2012. Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26: 353–362.CrossRefGoogle Scholar
  38. ———, B. W. Arentoft, O. Collin-Haubensak, M. D. Hyslop, C. K. Brandstrup, H. M. Mäkelä, Q. H. Tian & R. Wilson. 2013a. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecological Research 28: 1019–1028.CrossRefGoogle Scholar
  39. ———, K. Mielikäinen, M. Timonen, H. Herva, H. Tuomenvirta & A. Venäläinen. 2013b. Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 70: 27–34.CrossRefGoogle Scholar
  40. ———, H. Tuomenvirta & A. Venäläinen. 2011. Boreal and subarctic soils under climatic change. Global and Planetary Change 79: 37–47.CrossRefGoogle Scholar
  41. Holmes, R. L. 1983. Computer-assisted quality control in treering dating and measurement. Tree Ring Bulletin 43: 69–75.Google Scholar
  42. Holopainen, M., O. Leino, H. Kämäri & M. Talvitie. 2006. Drought damage in the park forests of the city of Helsinki. Urban Forestry & Urban Greening 4: 75–83.CrossRefGoogle Scholar
  43. Kirdyanov, A., M. Hughes, E. Vaganov, F. Schweingruber & P. Silkin. 2003. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17: 61–69.CrossRefGoogle Scholar
  44. Kuehne, C., E. Kublin, P. Pyttel & J. Bauhus. 2013. Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments. Journal of Forestry Research 24: 1–14.CrossRefGoogle Scholar
  45. Jönsson, U., T. Jung, K. Sonesson & U. Rosengren. 2005. Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathology 54: 502–511.Google Scholar
  46. Linderholm, H. W., A. Waltherm & D. Chen. 2008. Twentieth century trends in the thermal growing season in the Greater Baltic Area. Climatic Change 87: 405–419.CrossRefGoogle Scholar
  47. Manion, P. D. 1991. Tree disease concepts, ed. 2nd. Prentice Hall, Inc, Englewood Cliffs.Google Scholar
  48. ——— & D. Lachance. 1992. Forest decline concepts: an overview. Pp 181–190. In: P. D. Manion & D. Lachance (eds). Forest decline concepts. The American Phytopathological Society, St. Paul, MN.Google Scholar
  49. Niinemets, Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 1623–1639.CrossRefGoogle Scholar
  50. Pedersen, B. S. 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79: 79–93.CrossRefGoogle Scholar
  51. Pilcher, J. R. & B. Gray. 1982. The relationships between oak tree growth and climate in Britain. Journal of Ecology 70: 297–304.CrossRefGoogle Scholar
  52. Rainio, R. J. 1977. On the distribution of oak (Quercus robur) in the southwestern-most parts of Finland. Silvae Fennica 11: 127–135.CrossRefGoogle Scholar
  53. Raisio, J. 1996. Jalojen lehtipuiden luontaiset esiintymät - menneisyyden jäänteitä vai huomisen puita? Metsäntutkimuslaitoksen tiedonantoja 605: 53–66.Google Scholar
  54. Reyer, C. O. P., A. Ramming, N. Brouwers & F. Langerwisch. 2015. Forest resilience, tipping points and global change processes. Journal of Ecology 103: 1–4.CrossRefGoogle Scholar
  55. Robertson, I., J. Rolfe, V. R. Switsur, A. H. C. Carter, M. A. Hall, A. C. Barker & J. S. Waterhouse. 1997. Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland. Geophysical Research Letters 24: 1487–1490.CrossRefGoogle Scholar
  56. Rozas, V. 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: Tree-ring growth responses to climate. Annals of Science 62: 209–218.CrossRefGoogle Scholar
  57. ——— & I. García-González. 2012. Too wet for oaks? Inter-tree competition and recent persistent wetness predispose oaks to rainfall-induced dieback in Atlantic rainy forest. Global and Planetary Change 94–95: 62–71.CrossRefGoogle Scholar
  58. Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedGoogle Scholar
  59. Sevanto, S., N. G. McDowell, L. T. Dickman, R. Pangle & W. T. Pockman. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment 37: 153–161.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Silander, J. & E. A. Järvinen. 2004. Effects of severe drought of 2002/2003. The Finnish Environment 731: 1–79.Google Scholar
  61. Siwecki, R. & K. Ufnalski. 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology 28: 99–112.Google Scholar
  62. Sohar, K., S. Helama, A. Läänelaid, J. Raisio & H. Tuomenvirta. 2014a. Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria 41: 92–103.CrossRefGoogle Scholar
  63. ———, A. Läänelaid, D. Eckstein, S. Helama & J. Jaagus. 2014b. Dendroclimatic signals of pedunculate oak (Quercus robur L.) in Estonia. European Journal of Forest Research 133: 535–549.Google Scholar
  64. Sonesson, K. 1999. Oak decline in southern Sweden. Scandinavian Journal of Forest Research 14: 368–375.CrossRefGoogle Scholar
  65. Steinkamp, J. & T. Hickler. 2015. Is drought-induced forest dieback globally increasing? Journal of Ecology 103: 44–57.CrossRefGoogle Scholar
  66. Tainter, F. H., S. W. Fraedrich & D. M. Benson. 1984. The effect of climate on growth, decline, and death of northern red oaks in the Western North Carolina Nantahala Mountains. Castanea 49: 127–137.Google Scholar
  67. ———, ———, ———, W. A. Retzlaff, D. A. Starkey & S. W. Oak. 1990. Decline of radial growth in red oaks is associated with short-term changes in climate. European Journal of Forest Pathology 20: 95–105.CrossRefGoogle Scholar
  68. Tessier, L., P. Nola & F. Serre-Bachet. 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytologist 126: 355–367.CrossRefGoogle Scholar
  69. Thomas, F. M. & G. Hartmann. 1998. Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant and Soil 203: 145–158.Google Scholar
  70. Thomas, F. M., R. Blank & G. Hartmann. 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32: 277–307.CrossRefGoogle Scholar
  71. Tietäväinen, H., H. Tuomenvirta & A. Venäläinen. 2010. Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology 30: 2247–2256.CrossRefGoogle Scholar
  72. Vaganov, E. A., M. K. Hughes, A. V. Kirdyanov, F. H. Schweingruber & P. P. Silkin. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400: 149–151.CrossRefGoogle Scholar
  73. Valkonen, S. 2008. Survival and growth of planted and seeded oak (Quercus robur L.) seedlings with and without shelters on field afforestation sites in Finland. Forest Ecology and Management 255: 1085–1094.CrossRefGoogle Scholar
  74. Wigley, T. M. L., K. R. Briffa & P. D. Jones. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.CrossRefGoogle Scholar
  75. Wolkovich, E. M., B. I. Cook, K. K. McLauchlan & T. J. Davies. 2014. Temporal ecology in the Anthropocene. Ecology Letters 17: 1365–1379.CrossRefPubMedGoogle Scholar
  76. Young, C. W. T. 1965. Death of Pedunculate oak and variations in annual radial increments related to climate. Forest record, Forestry commission 55: 1–15.Google Scholar
  77. Zeppel, M. J. B., W. R. L. Anderegg & H. D. Adams. 2013. Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytologist 197: 372–374.CrossRefPubMedGoogle Scholar
  78. Zimmermann, J., M. Hauck, C. Dulamsurem & C. Leuschnew. 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560–572.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2016

Authors and Affiliations

  • Samuli Helama
    • 1
  • Kristina Sohar
    • 2
    • 3
  • Alar Läänelaid
    • 3
  • Hanna M. Mäkelä
    • 4
  • Juha Raisio
    • 5
  1. 1.Natural Resources Institute FinlandRovaniemiFinland
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Department of Geography, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  4. 4.Finnish Meteorological InstituteHelsinkiFinland
  5. 5.The Public Works Department, Street and Park DivisionCity of HelsinkiFinland

Personalised recommendations