The Botanical Review

, Volume 81, Issue 3, pp 189–294 | Cite as

Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization

  • Ernest SmallEmail author


Cannabis sativa has been employed for thousands of years, primarily as a source of a stem fiber (both the plant and the fiber termed “hemp”) and a resinous intoxicant (the plant and its drug preparations commonly termed “marijuana”). Studies of relationships among various groups of domesticated forms of the species and wild-growing plants have led to conflicting evolutionary interpretations and different classifications, including splitting C. sativa into several alleged species. This review examines the evolving ways Cannabis has been used from ancient times to the present, and how human selection has altered the morphology, chemistry, distribution and ecology of domesticated forms by comparison with related wild plants. Special attention is given to classification, since this has been extremely contentious, and is a key to understanding, exploiting and controlling the plant. Differences that have been used to recognize cultivated groups within Cannabis are the results of disruptive selection for characteristics selected by humans. Wild-growing plants, insofar as has been determined, are either escapes from domesticated forms or the results of thousands of years of widespread genetic exchange with domesticated plants, making it impossible to determine if unaltered primeval or ancestral populations still exist. The conflicting approaches to classifying and naming plants with such interacting domesticated and wild forms are examined. It is recommended that Cannabis sativa be recognized as a single species, within which there is a narcotic subspecies with both domesticated and ruderal varieties, and similarly a non-narcotic subspecies with both domesticated and ruderal varieties. An alternative approach consistent with the international code of nomenclature for cultivated plants is proposed, recognizing six groups: two composed of essentially non-narcotic fiber and oilseed cultivars as well as an additional group composed of their hybrids; and two composed of narcotic strains as well as an additional group composed of their hybrids.


Cannabis sativa Marijuana Hemp Taxonomy Classification Evolution 



All scanning electron microphotographs are by E. Small and T. Antle. B. Brookes and B. Flahey assisted with preparation of illustrations. Unless otherwise acknowledged in the figure captions, photos are by E. Small. B. Brookes skillfully assembled and enhanced the illustrations for publication. Creative Commons Licenses employed in this article: CC BY 2.0 (Attribution 2.0 Generic):; CC BY 3.0 (Attribution 3.0 Unported):

Literature Cited

  1. Abel, E. L. 1980. Marihuana: the first twelve thousand years. Plenum Press, New York.CrossRefGoogle Scholar
  2. Ainsworth, C. 2000. Boys and girls come out to play: the molecular biology of dioecious plants. Annals of Botany 86: 211–221.CrossRefGoogle Scholar
  3. Anderson, E. 1954. Plants, life, and man. Melrose, London.Google Scholar
  4. Andersson, M. S. & M. C. de Vicente. 2010. Gene flow between crops and their wild relatives. Johns Hopkins University Press, Baltimore.Google Scholar
  5. Anonymous. 1822. Galerie industrielle. Eymery, Paris.Google Scholar
  6. ———. 1933. Discovery of sexuality in plants. Nature 131: 392–392.Google Scholar
  7. ———. 2006. Medical marijuana: reefer madness, marijuana is medically useful, whether politicians like it or not. The Economist 379(8475): 83–84.Google Scholar
  8. Anstee, D. J. 2010. The relationship between blood groups and disease. Blood 115: 4635–4643.PubMedCrossRefGoogle Scholar
  9. Arendt, J. & D. Reznick. 2007. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation. Trends in Ecology and Evolution 23: 26–32.PubMedCrossRefGoogle Scholar
  10. Armentano, P. 2013. Should per se limits be imposed for cannabis? Equating cannabinoid blood concentrations with actual driver impairment: practical limitations and concerns. Humboldt Journal of Social Relations 35: 45–55.Google Scholar
  11. Ash, A. L. 1948. Hemp: production and utilization. Economic Botany 2: 158–169.CrossRefGoogle Scholar
  12. Ashton, J. C. 2012. Synthetic cannabinoids as drugs of abuse. Current Drug Abuse Reviews 5: 158–168.PubMedCrossRefGoogle Scholar
  13. Atal, C. K. 1959. Sex reversal in hemp by application of gibberellin. Current Science 28: 408–409.Google Scholar
  14. Avico, U., R. Pacifici & P. Zuccaro. 1985. Variations of tetrahydrocannabiol content in cannabis plants to distinguish the fibre-type from drug-type plants. Bulletin on Narcotics 37(4): 61–65.PubMedGoogle Scholar
  15. Baker, H. G. 1974. The evolution of weeds. Annual Review of Ecology and Systematics 5: 1–34.CrossRefGoogle Scholar
  16. Barrett, S. C. H. 1982. Genetic variation in weeds. Pp 73–98. In: R. Charudattan & H. Walker (eds). Biological control of weeds with plant pathogens. Wiley, New York.Google Scholar
  17. Bawa, K. S. 1980. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics 11: 15–39.CrossRefGoogle Scholar
  18. Bazzaz, F. A., D. Dusek, D. S. Seigler & A. W. Haney. 1975. Photosynthesis and cannabinoid content of temperate and tropical populations of Cannabis sativa. Biochemical Systematics and Ecology 3: 15–18.CrossRefGoogle Scholar
  19. Beutler, J. A. & A. H. Der Marderosian. 1978. Chemotaxonomy of Cannabis I. Crossbreeding between Cannabis sativa and C. ruderalis, with analysis of cannabinoid content. Economic Botany 32: 387–394.CrossRefGoogle Scholar
  20. Bócsa, I. 1998. Genetic improvement: conventional approaches. Pp 153–184. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), London.Google Scholar
  21. ——— & M. Karus. 1998. The cultivation of hemp: botany, varieties, cultivation and harvesting. Hemptech, Sebastopol.Google Scholar
  22. ———, M. Máthé & L. Hangyel. 1997. Effect of nitrogen on tetrahydrocannabinol (THC) content in hemp (Cannabis sativa L.) leaves at different positions. Journal of the International Hemp Association 4(2): 80–81.Google Scholar
  23. Bohlmann, F. & E. Hoffmann. 1979. Cannabigerol-ähnliche Verbindungen aus Helichrysum umbraculigerum. Phytochemistry 18: 1371–1374.CrossRefGoogle Scholar
  24. Borlaug, N. E. 2000. The green revolution revisited and the road ahead. Norwegian Nobel Institute, Oslo. (Accessed July 10, 2015.)
  25. Borthwick, H. A. & N. J. Scully. 1954. Photoperiodic responses in hemp. Botanical Gazette 116: 14–29.CrossRefGoogle Scholar
  26. Bouloc, P. (ed). 2006. Le chanvre industriel: production et utilisations. Groupe France Agricole, Paris.Google Scholar
  27. Bouquet, R. J. 1950. Cannabis. Bulletin on Narcotics 2(4): 14–30.Google Scholar
  28. Boyce, S. S. 1900. Hemp (Cannabis sativa). A practical treatise on the culture of hemp for seed and fiber with a sketch of the history and nature of the hemp plant. Orange Judd, New York.Google Scholar
  29. Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115–156.CrossRefGoogle Scholar
  30. Brickell, C. D., C. Alexander, J. C. David, W. L. A. Hetterscheid, A. C. Leslie, V. Malecot, X. Jin & J. J. Cubey. 2009. International code of nomenclature for cultivated plants. International Society for Horticultural Science, Leuven.Google Scholar
  31. Brown, V. K., J. H. Lawton & P. J. Grubb. 1991. Herbivory and the evolution of leaf size and shape. Philosophical Transactions of the Royal Society, B, Biological Sciences 333: 265–272.CrossRefGoogle Scholar
  32. Cabezudo, B., M. Recio, J. M. Sánchez-Laulhé, M. Del Mar Trigo, F. J. Toro & F. Polvorinos. 1997. Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmospheric Environment 31: 3323–3328.CrossRefGoogle Scholar
  33. Callaway, J. C. 2002. Hemp as food at high latitudes. Journal of Industrial Hemp 7(1): 105–117.CrossRefGoogle Scholar
  34. ——— 2004. Hempseed as a nutritional resource: an overview. Euphytica 140: 65–72.CrossRefGoogle Scholar
  35. ———, T. Tennilä & D. W. Pate. 1996. Occurrence of “omega-3” stearidonic acid (cis-6,9,12,15-octadecatetraenoic acid) in hemp (Cannabis sativa L.) seed. Journal of the International Hemp Association 3(2): 61–63.Google Scholar
  36. Carlini, E. A. & J. M. Cunha. 1981. Hypnotic and antiepileptic effects of cannabidiol. The Journal of Clinical Pharmacology 21: 417–427.CrossRefGoogle Scholar
  37. Cascini, F., C. Aiello & G. Di Tanna. 2012. Increasing delta-9-tetrahydrocannabinol (Δ9-THC) content in herbal cannabis over time: systematic review and meta-analysis. Current Drug Abuse Reviews 5: 32–40.PubMedCrossRefGoogle Scholar
  38. Chailakhan, M. K. 1979. Genetic and hormonal regulation of growth, flowering and sex expression in plants. American Journal of Botany 66: 717–736.CrossRefGoogle Scholar
  39. Chaitra, M. S., K. Vasudevan & K. Shanker. 2004. The biodiversity bandwagon: the splitters have it. Current Science 86: 897–899.Google Scholar
  40. Chandra, S., H. Lata, Z. Mehmedic, I. A. Khan & M. A. ElSohly. 2010a. Assessment of cannabinoids content in micropropagated plants of Cannabis sativa and their comparison with conventionally propagated plants and mother plant during developmental stages of growth. Planta Medica 76: 743–750.PubMedCrossRefGoogle Scholar
  41. ———, ———, ———, ——— & ———. 2010b. Propagation of elite Cannabis sativa L. for the production of Δ9-tetrahydrocannabinol (THC) using biotechnological tools. Pp 98–114. In: R. Arora (ed). Medicinal Plant Biotechnology. CAB International, Wallingford.Google Scholar
  42. Clarke, R. C. 1977. The botany and ecology of Cannabis. Pods, Ben Lomond.Google Scholar
  43. ——— 1981. Marijuana botany: An advanced study: the propagation and breeding of distinctive Cannabis. And/Or Press, Berkeley.Google Scholar
  44. ——— 1998. Hashish! Red Eye Press, Los Angeles.Google Scholar
  45. ——— & M. D. Merlin. 2013. Cannabis: Evolution and ethnobotany. University of California Press, Los Angeles.Google Scholar
  46. ——— & D. P. Watson. 2002. Botany of natural Cannabis medicines. Pp 1–14. In: F. Grotenhermen & E. Russo (eds). Cannabis and cannabinoids: pharmacology, toxicology, and therapeutic potential. Haworth Integrative Healing Press, New York.Google Scholar
  47. ——— & ———. 2007. Cannabis and natural Cannabis medicines. Pp 1–17. In: M. A. ElSohly (ed). Marijuana and the cannabinoids. Humana Press, Totowa.CrossRefGoogle Scholar
  48. Clausen, J., D. Keck & W. Hiesey. 1948. Experimental studies on the nature of species. 3. Environmental responses of climatic races of Achillea. Carnegie Institute of Washington, Stanford.Google Scholar
  49. Coffman, C. B. & W. A. Gentner. 1975. Cannabinoid profile and elemental uptake of Cannabis sativa L. as influenced by soil characteristics. Agronomy Journal 67: 491–497.CrossRefGoogle Scholar
  50. ——— & ———. 1977. Responses of greenhouse-grown Cannabis sativa L. to nitrogen, phosphorus, and potassium. Agronomy Journal 69: 832–836.CrossRefGoogle Scholar
  51. Cristiana Moliterni, V. M., L. Cattivelli, P. Ranalli & G. Mandolino. 2004. The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140: 95–106.CrossRefGoogle Scholar
  52. Danko, D. 2010. The official High Times field guide to marijuana strains. High Times Corporation, New York.Google Scholar
  53. Darlington, C. D. 1973. Chromosome botany and the origins of cultivated plants, ed. 3rd. Allen & Unwin, London.Google Scholar
  54. Darwin, C. 1845. Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the command of Capt. Fitz Roy, R.N, ed. 2nd. John Murray, London.Google Scholar
  55. ——— 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, U.K.CrossRefGoogle Scholar
  56. ——— 1868. The variation of animals and plants under domestication, Vol. 1. John Murray, London.Google Scholar
  57. David, J., G. M. Garrity, W. Greuter, D. L. Hawksworth, R. Jahn, P. M. Kirk, J. McNeill, E. Michel, S. Knapp, D. J. Patterson, B. J. Tindall, J. A. Todd, J. van Tol & N. J. Turland. 2012. Biological nomenclature terms for facilitating communication in the naming of organisms. ZooKeys 192: 67–72.PubMedCrossRefGoogle Scholar
  58. Davidyan, G. G. 1972. Hemp: biology and initial material for breeding. Trudy po Prikladnoi Botanike, Genetikei Selektsii. Bulletin of Applied Botany, of Genetics, and Plant-breeding 48: 1–160. (In Russian).Google Scholar
  59. De Candolle, A. 1885. Origin of cultivated plants. D. Appleton & Co., New York.CrossRefGoogle Scholar
  60. De Guzman, D. 2001. Hemp oil shows huge gains in food and personal care. Chemical Market Reporter 259(10): 7.Google Scholar
  61. De Meijer, E. P. M. 1994. Diversity in Cannabis. Wageningen Agricultural University, Wageningen. (Published doctoral thesis.)Google Scholar
  62. ——— 1995. Fibre hemp cultivars: a survey of origin, ancestry, availability and brief agronomic characteristics. Journal of the International Hemp Association 2(2): 66–73.Google Scholar
  63. ——— 1998. Cannabis germplasm resources. Pp 133–151. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), New York.Google Scholar
  64. ——— 2014. Pp 89–110. In: R. G. Pertwee (ed). Handbook of cannabis. Oxford University Press, Oxford.CrossRefGoogle Scholar
  65. ——— & K. M. Hammond. 2005. The inheritance of chemical phenotype in Cannabis sativa L. (II): canabigerol predominant plants. Euphytica 145: 189–198.CrossRefGoogle Scholar
  66. ———, ——— & M. Micheler. 2009a. The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichrome proportion. Euphytica 165: 293–311.CrossRefGoogle Scholar
  67. ———, ——— & A. Sutton. 2009b. The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168: 95–112.CrossRefGoogle Scholar
  68. ———, M. Bagatta, A. Carboni, P. Crucitti, V. M. Moliterni, P. Ranalli & G. Mandolino. 2003. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163: 335–346.PubMedCentralPubMedGoogle Scholar
  69. Deferne, J.-L. & D. W. Pate. 1996. Hemp seed oil: a source of valuable essential fatty acids. Journal of the International Hemp Association 3(1): 4–7.Google Scholar
  70. Devane, W. A., L. Hanus, A. Breuer, R. G. Pertwee, L. A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger & R. Mechoulam. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949.PubMedCrossRefGoogle Scholar
  71. Dewey L H. 1902. Hemp. Pp. 250–251. In: U.S. Department of Agriculture (corporate ed.), 1901 Yearbook of the United States Department of Agriculture. Government Printing Office, Washington, D.C.Google Scholar
  72. ——— 1914. Hemp. Pp. 283–146. In: U.S. Department of Agriculture (corporate ed.), Yearbook of the United States Department of Agriculture 1913. U.S. Department of Agriculture, Washington, D.C.Google Scholar
  73. Diamond, J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418: 700–707.PubMedCrossRefGoogle Scholar
  74. Diederichsen, A. & J. P. Raney. 2006. Seed colour, seed weight and seed oil content in Linum usitatissimum accessions held by Plant Gene Resources of Canada. Plant Breeding 125: 372–377.CrossRefGoogle Scholar
  75. ElSohly, M. A. (ed). 2007. Marijuana and the cannabinoids. Humana Press, Totowa.Google Scholar
  76. ——— & D. Slade. 2005. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sciences 78: 539–548.PubMedCrossRefGoogle Scholar
  77. Emerich, D. W. & H. B. Krishnan. 2009. Nitrogen fixation in crop production. American Society of Agronomy, Madison.Google Scholar
  78. Faegri, K., J. Iverson, P. E. Kaland & K. Krzywinski. 1989. Textbook of pollen analysis, ed. 4th. Wiley, New York.Google Scholar
  79. Fairbairn, J. W. & J. T. Pickens. 1981. Activity of cannabis in relation to its Δ1-trans-tetrahydrocannabinol content. British Journal of Pharmacology 72: 401–409.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Fellermeier, M. & M. H. Zenk. 1998. Prenylation of olvetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Letters 427: 283–285.PubMedCrossRefGoogle Scholar
  81. Fetterman, P. S., E. S. Keith, C. W. Waller, O. Guerrero, N. J. Doorenbos & M. W. Quimby. 1971. Mississippi-grown Cannabis sativa L. Preliminary observation on chemical definition of phenotype and variations in tetrahydrocannabinol content versus age, sex, and plant part. Journal of Pharmaceutical Sciences 60: 1246–1477.PubMedCrossRefGoogle Scholar
  82. Flachowsky, H., E. Schumann, W. E. Weber & A. Peil. 2001. Application of AFLP for the detection of sex-specific markers in hemp. Plant Breeding 120: 305–309.CrossRefGoogle Scholar
  83. Flores-Sanchez, I. J. & R. Verpoorte. 2008. Secondary metabolism in cannabis. Phytochemistry Reviews 7: 615–639.CrossRefGoogle Scholar
  84. Fournier, G., C. Richez-Dumanois, J. Duvezin, J.-P. Mathieu & M. Paris. 1987. Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Medica 53: 277–280.PubMedCrossRefGoogle Scholar
  85. Fuller, D. Q. & R. Allaby. 2009. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Annual Plant Reviews 38: 238–295.Google Scholar
  86. Furr, M. & P. G. Mahlerg. 1981. Histochemcial analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products 44: 153–159.CrossRefGoogle Scholar
  87. Gagne, S. J., J. M. Stout, E. Liu, Z. Boubakir, S. M. Clark & J. E. Page. 2012. Identification of olivetolic acic cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. PNAS 109: 12811–12816.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Garcia-Jaldon, v., D. Dupreyre & M. R. Vignon. 1998. Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Energy 14: 251–260.CrossRefGoogle Scholar
  89. Gertsch, J., R. G. Pertwee & V. Di Marzo. 2010. Phytocannabinoids beyond the Cannabis plant – do they exist? British Journal of Pharmacology 160: 523–529.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Givnish, T. J. 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63–92.CrossRefGoogle Scholar
  91. Gorshkova, L. M., G. I. Senchenko & V. G. Virovets. 1988. Method of evaluating hemp plants for content of cannabinoid compounds. Referativnyi Zhurnal 12.65.322. (Abstract, in Russian.)Google Scholar
  92. Gove, P. B. (ed). 1981. Webster’s third new international dictionary of the English language unabridged. Merriam-Webster Inc., Springfield.Google Scholar
  93. Grisswell, J. & V. Young. 2011. Professor Grow’s book of strains. The 50 Cannabis strains most commonly found at dispensaries. Professor Grow, LLC, Firestone.Google Scholar
  94. Grotenhermen, F. 2003. Clinical pharmacodynamics of cannabinoids. Journal of Cannabis Therapeutics 4: 29–78.CrossRefGoogle Scholar
  95. ——— 2004a. Pharmacokinetics and pharmacodynamics of cannabinoids. Clinical Pharmacokinetics 4: 327–360.Google Scholar
  96. ——— 2004b. The cannabinoid system – a brief review. Journal of Industrial Hemp 9(2): 87–92.CrossRefGoogle Scholar
  97. ——— & M. Karus. 1998. Industrial hemp is not marijuana: comments on the drug potential of fiber Cannabis. Journal of the International Hemp Association 5(2): 96–101.Google Scholar
  98. ——— & K. Műller-Vahl. 2012. The therapeutic potential of Cannabis and cannabinoids. Deutsches Ärzteblatt International 109: 495–501.PubMedCentralPubMedGoogle Scholar
  99. ——— & E. Russo. 2002. Cannabis and cannabinoids: pharmacology, toxicology, and therapeutic potential. Haworth Integrative Healing Press (of Haworth Press), New York.Google Scholar
  100. ———, M. Karus & D. Lohmeyer. 1998. THC limits for food: A scientific study. Journal of the International Hemp Association 5(2): 101–105.Google Scholar
  101. _____, G. Leson, G. Berghaus, O. H. Drummer, H.-P. Krüger, M. Longo, H. Moskowitz, B. Perrine, J. Ramaekers, A. Smiley & R. Tunbridge. 2005. Developing science-based per se limits for driving under the influence of cannabis: findings and recommendations by an expert panel. Nova Institute, Hürth. (Accessed July 10, 2015.)
  102. Grudzinskaya, I. A. 1988. The taxonomy of the family Cannabaceae. Botanicheskiy Zhurnal (Leningrad) 73: 589–593. In Russian.Google Scholar
  103. Hamayun, M. & Z. K. S. Shinwari. 2004. Folk methodology of charas (hashish) production and its marketing at Afridi Tirah, Federally Administered Tribal Areas (FATA), Pakistan. Journal of Industrial Hemp 9(2): 41–50.CrossRefGoogle Scholar
  104. Hammer, K & Y. Morimoto. 2012. Chapter 7: Classifications of infraspecific variation in crop plants. In: L. Guarino & V. Ramanatha Rao (eds.), Collecting plant genetic diversity: Technical guidelines. 2011 update. (Accessed July 10, 2015.)
  105. Hammond, C. T. & P. G. Mahlberg. 1977. Morphogenesis of capitate glandular hairs of Cannabis sativa (Cannabaceae). American Journal of Botany 64: 1023–1031.CrossRefGoogle Scholar
  106. ——— & ———. 1978. Ultrastructural development of capitate glandular hairs of Cannabis sativa L. (Cannabaceae). American Journal of Botany 65: 140–151.CrossRefGoogle Scholar
  107. Haney, A. & F. A. Bazzaz. 1970. Some ecological implications of the distribution of hemp (Cannabis sativa L.) in the United States of America. Pp 39–48. In: C. R. B. Joyce & S. H. Curry (eds). The botany and chemistry of Cannabis. J. & A. Churchill, London.Google Scholar
  108. ——— & B. B. Kutscheid. 1973. Quantitative variation in the chemical constituents o marijuana from stands of naturalized Cannabis sativa L. in east-central Illinois. Economic Botany 27: 193–203.Google Scholar
  109. ——— & ———. 1975. An ecological study of naturalized hemp (Cannabis sativa L.) in east-central Illinois. American Midland Naturalist 93: 1–24.CrossRefGoogle Scholar
  110. Harlan, J. R. 1995. The living fields, our agricultural heritage. Cambridge University Press, Cambridge.Google Scholar
  111. ——— & J. M. J. de Wet. 1971. Toward a rational classification of cultivated plants. Taxon 20: 509–517.CrossRefGoogle Scholar
  112. Hartsel, S. C., W. H. Y. Loh & L. W. Robertson. 1983. Biotransformation of cannabidiol to cannabielsoin by suspension cultures of Cannabis sativa L. and Saccharum officinalis L. Plant Medica 48: 17–19.CrossRefGoogle Scholar
  113. Hazekamp, A. & J. T. Fischedick. 2012. Cannabis – from cultivar to chemovar. Drug Testing and Analysis 4: 660–667.PubMedCrossRefGoogle Scholar
  114. Heiser, C. B. 1988. Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37: 77–81.CrossRefGoogle Scholar
  115. Heitrich, A. & M. Binder. 1982. Identification of (3R,4R)-Δ1(6)-tetrahydrocannabinol as an isolation artifact of cannabinoid acids formed by callus cultures. Experientia 38: 898–899.CrossRefGoogle Scholar
  116. Hemphill, J., J. Turner & P. Mahlberg. 1980. Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. Journal of Natural Products 43: 112–122.CrossRefGoogle Scholar
  117. Heslop-Harrison, J. 1956. Auxin and sexuality in Cannabis sativa. Physiologia Plantarum 4: 588–597.CrossRefGoogle Scholar
  118. ——— & Y. Heslop-Harrison. 1957. Studies on flowering-plant growth and organogenesis. II. The modification of sex expression in Cannabis sativa by carbon monoxide. Proceedings of the Royal Society of Edinburgh. Section B. Biology 66: 424–434.Google Scholar
  119. ——— & ———. 1969. Cannabis sativa L. Pp 205–226. In: L. T. Evans (ed). The induction of flowering. Some case histories. Cornell University Press, Ithaca.Google Scholar
  120. Hetterscheid, W. L. A., R. G. van Den Berg & W. A. Brandeburg. 1996. An annotated history of the principles of cultivated plant classification. Acta Botanica Neerlandica 45: 123–134.CrossRefGoogle Scholar
  121. Hillig, K. W. 2002. Letter to the editor. Journal of Industrial Hemp 7(1): 5–6.CrossRefGoogle Scholar
  122. ——— 2004a. A chemotaxonomic analysis of terpenoid variation in Cannabis. Biochemical Systematics and Ecology 32: 875–891.CrossRefGoogle Scholar
  123. ——— 2004b. A multivariate analysis of allozyme variation in 93 Cannabis accessions from the VIR germplasm collection. Journal of Industrial Hemp 9(2): 5–22.CrossRefGoogle Scholar
  124. ——— 2005. Genetic evidence for speciation in Cannabis (Cannabaceae). Genetic Research and Crop Evolution 52(2): 161–180.CrossRefGoogle Scholar
  125. ——— & P. G. Mahlberg. 2004. A systematic analysis of cannabinoid variation in Cannabis (Cannabaceae). American Journal of Botany 91: 966–975.PubMedCrossRefGoogle Scholar
  126. Hoffmann, W. 1970. Hemp (Cannabis sativa L.). Pp 415–430. In: W. Hoffmann, A. Mudra, & W. Plarre (eds). Textbook of breeding agricultural cultivated plants, Vol. 2. P. Parey, Berlin. (In German).Google Scholar
  127. Hölldolber, B. & E. O. Wilson. 1990. The ants. Belknap, Cambridge.CrossRefGoogle Scholar
  128. Huang, H. T. 2000. Science and civilization in China, Vol. 6: biology and biological technology, Part V: fermentations and food science. Cambridge University, Cambridge.Google Scholar
  129. Idler, C., R. Pecenka, C. Fürll & H.-J. Gusovius. 2011. Wet processing of hemp: an overview. Journal of Natural Fibers 8: 59–90.CrossRefGoogle Scholar
  130. Inam, B., F. Hussain & F. Bano. 1989. Cannabis sativa L. is allelopathic. Pakistan Journal of Scientific and Industrial Research 32: 617–620.Google Scholar
  131. Isaac, N. J. B., J. Mallet & G. M. Mace. 2004. Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology and Evolution 19: 464–469.PubMedCrossRefGoogle Scholar
  132. Janischevsky, D. E. 1924. A form of hemp in wild areas of southeastern Russia. Učenye zapiski Saratovskogo Gosudarstvennogo imeni N.G. Černyševskogo Universiteta 2(2): 3–17. (In Russian).Google Scholar
  133. Jansen, M. & R. Teris. 2002. One woman’s work in the use of hashish in a medical context. Journal of Cannabis Therapeutics 2(3/4): 133–141.Google Scholar
  134. Jarillo, J. A., I. del Olmo, A. Gómez-Zambrano, A. Lázaro, L. López-González, E. Miguel, L. Narro-Diego, D. Sáez & M. Piñeiro. 2008. Review. Photoperiodic control of flowering time. Spanish Journal of Agricultural Research 6(Special issue): 221–244.CrossRefGoogle Scholar
  135. Jeffrey, C. 1968. Systematic categories for cultivated plants. Taxon 17: 109–114.CrossRefGoogle Scholar
  136. Jirásek, V. 1961. Evolution of the proposals of taxonomical categories for the classification of cultivated plants. Taxon 10(2): 34–45.CrossRefGoogle Scholar
  137. Johnson, K. P. & M. D. Sorenson. 1999. Phylogeny and biogeography of the dabbling ducks (Genus: Anas): A comparison of molecular and morphological evidence. The Auk 116: 792–805.CrossRefGoogle Scholar
  138. Johnson, J. M., L. Lemberger, M. Novotny, R. B. Forney, W. S. Dalton & M. P. Maskarinec. 1984. Pharmacological activity of the basic fraction of marihuana whole smoke condensate alone and in combination with delta-9-tetrahydrocannabinol in mice. Toxicology and Applied Pharmacology 72: 440–448.PubMedCrossRefGoogle Scholar
  139. Joy, J. E., J. Stanley, S. J. Watson Jr. & J. A., Benson Jr. (eds). 1999. Marijuana and medicine: assessing the science base. National Academy Press, Washington, D.C.Google Scholar
  140. Kim, E. S. & P. G. Mahlberg. 1995. Glandular cuticle formation in Cannabis (Cannabaceae). American Journal of Botany 82: 1207–1214.CrossRefGoogle Scholar
  141. ——— & ———. 1997. Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). American Journal of Botany 84: 336–342.PubMedCrossRefGoogle Scholar
  142. ——— & ———. 2003. Secretory vesicle formation in the secretory cavity of glandular trichomes of Cannabis sativa L. (Cannabaceae). Molecules & Cells 15: 387–395.Google Scholar
  143. King, L. A., C. Carpentier & P. Griffiths. 2005. Cannabis potency in Europe. Addiction 100: 884–886.PubMedCrossRefGoogle Scholar
  144. Kluyver, T. A., M. Charles, G. Jones, M. Rees & C. P. Osborne. 2013. Did greater burial depth increase the seed size of domesticated legumes? Journal of Experimental Botany 64: 4101–4108.PubMedCrossRefGoogle Scholar
  145. Köhler, F. E. 1887. Medizinal-Pflanzen. Gera-Untermhaus, Berlin.Google Scholar
  146. Krings, M., T. N. Taylor & D. W. Kellogg. 2002. Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evolutionary Ecology Research 4: 779–786.Google Scholar
  147. Kushima, H., Y. Shoyama & I. Nishioka. 1980. Cannabis. XII. Variations of cannabinoid contents in several strains of Cannabis sativa L. with leaf-age, season and sex. Chemical and Pharmaceutical Bulletin 28: 594–598.CrossRefGoogle Scholar
  148. Lallemand, M. G. & M. Levy. 1860. L’illustration Journal Universel 926. (Weekly newspaper, Nov. 24, Paris, France; accompanying an article by M. Leon Loiseau.)Google Scholar
  149. Lata, H., S. Chandra, N. Techen, I. A. Khan & M. A. ElSohly. 2011. Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Biotechnology Letters 33: 2503–2508.PubMedCrossRefGoogle Scholar
  150. Latta, R. & B. Eaton. 1975. Seasonal fluctuations in cannabinoid content of Kansas marijuana. Economic Botany 29: 153–163.CrossRefGoogle Scholar
  151. Lavins, E. S., B. D. Lavins & A. J. Jenkins. 2004. Cannabis (marijuana) contamination of United States and foreign paper currency. Journal of Analytical Toxicology 28: 439–442.PubMedCrossRefGoogle Scholar
  152. Le Dain, G. (chair). 1972. Cannabis. A report of the commission of inquiry into the non-medical use of drugs. Information Canada, Ottawa.Google Scholar
  153. Ledbetter, M. C. & A. D. Krikorian. 1975. Trichomes of Cannabis sativa as viewed with scanning electron microscope. Phytomorphology 25: 166–176.Google Scholar
  154. Leizer, C., D. Ribnicky, A. Poulev, S. Dushenkov & I. Raskin. 2000. The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals Functional and Medical Foods 2: 35–53.CrossRefGoogle Scholar
  155. Leson, G. 2001. Evaluating interference of THC in hemp food produces with employee drug testing. Irregularly paginated. In: Nova Institute (corporate ed.), Bioresource hemp & other fibre crops: proceedings of the symposium, Wolfsburg, Germany, Sept. 13–16, 2000. Nova Institute, Hürth.Google Scholar
  156. ——— & P. Pless. 2002. Hemp seed and hemp oil. Pp 411–425. In: F. Grotenhermen & E. Russo (eds). Cannabis and cannabinoids. Pharmacology, toxicology, and therapeutic potential. Haworth Integrative Healing Press, Binghamton.Google Scholar
  157. Levin, D. A. 2001. The recurrent origin of plant races and species. Systematic Botany 26: 197–204.Google Scholar
  158. Lewis, D. 1942. The evolution of sex in flowering plants. Biological Reviews 17: 46–67.CrossRefGoogle Scholar
  159. Lewis, W. H. & M. P. F. Elvin-Lewis. 2003. Medical botany: plants affecting human health, ed. 2nd. Wiley, Hoboken.Google Scholar
  160. Li, Y., K. L. Pickering & R. L. Farrell. 2009. Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Industrial Crops and Products 29: 420–426.CrossRefGoogle Scholar
  161. Lindemayr, H. & S. Jager. 1980. Occupational immediate type allergy to hemp pollen and hashish. Dermatosen in Beruf und Umwelt 28(1): 17–19. (In German).PubMedGoogle Scholar
  162. Linnaeus, C. 1753. Species plantarum, Vol. 2 vols. Laurentius Salvius, Stockholm.Google Scholar
  163. Lydon, J., A. H. Teramura & C. B. Coffman. 1987. UV-B radiation effects on photosynthesis, growth and cannabinoid production of two Cannabis sativa chemotypes. Photochemistry and Photobiology 46: 201–206.PubMedCrossRefGoogle Scholar
  164. Mahlberg, P. G. & J. K. Hemphill. 1983. Effect of light quality on cannabinoid content of Cannabis sativa L. (Cannabaceae). Botanical Gazette 144: 43–48.CrossRefGoogle Scholar
  165. ——— & E. S. Kim. 1991. Cuticle development on glandular trichomes of Cannabis sativa (Cannabaceae). American Journal of Botany 78: 1113–1122.CrossRefGoogle Scholar
  166. ——— & ———. 1992. Secretory vesicle formation in glandular trichomes of Cannabis sativa (Cannabaceae). American Journal of Botany 79: 166–173.CrossRefGoogle Scholar
  167. ——— & ———. 2004. Accumulation of cannabinoids in glandular trichomes of Cannabis (Cannabaceae). Journal of Industrial Hemp 9(1): 15–36.CrossRefGoogle Scholar
  168. ———, C. T. Hammond, J. C. Turner & J. K. Hemphill. 1984. Structure, development and composition of glandular trichomes of Cannabis sativa L. Pp 23–51. In: E. Rodriguez, P. L. Healey, & I. Mehta (eds). Biology and chemistry of plant trichomes. Plenum Press, New York.CrossRefGoogle Scholar
  169. Malingré, T., H. Hendricks, S. Batterman, R. Bos & J. Visser. 1975. The essential oil of Cannabis sativa. Planta Medica 28: 56–61.PubMedCrossRefGoogle Scholar
  170. Mandolino, G. 2004. Again on the nature of inheritance of chemotype. Letter to the editor. Journal of Industrial Hemp 9(1): 5–7.CrossRefGoogle Scholar
  171. ——— & P. Ranalli. 1998. Advances in biotechnological approaches for hemp breeding and industry. Pp 185–212. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), New York.Google Scholar
  172. ——— & ——— 2002. The applications of molecular markers in genetics and breeding o hemp. Journal of Industrial Hemp 7(1): 7–23.Google Scholar
  173. ———, A. Carboni, S. Forapani, V. Faeti & P. Ranalli. 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theoretical and Applied Genetics 98: 86–92.CrossRefGoogle Scholar
  174. ———, ———, M. Bagatta, V. M. Cristiana Moliterni & P. Ranalli. 2002. Occurrence and frequency of putatively Y chromosome linked DNA markers in Cannabis sativa L. Euphytica 126: 211–218.CrossRefGoogle Scholar
  175. ———, M. Bagatta, A. Carboni, P. Ranalli & E. P. M. de Meijer. 2003. Qualitative and quantitative aspects of the inheritance of chemical phenotype in Cannabis. Journal of Industrial Hemp 8(2): 52–72.CrossRefGoogle Scholar
  176. McNaughton, S. J. 1983. Compensatory plant growth as a response to defoliation by gypsy moth larvae. Oikos 49: 329–336.CrossRefGoogle Scholar
  177. McNeill, J. 1998. Culton: a useful term, questionably argued. Hortax News 1(4): 15–22.Google Scholar
  178. ——— 2004. Nomenclature of cultivated plants: a historical botanical standpoint. Pp 29–36. In: C. G. Davidson & P. Trehane (eds). Fourth international symposium on taxonomy of cultivated plants. International Society for Horticultural Science, Leuven.Google Scholar
  179. ———, F. R. Barrie, W. R. Buck, V. Demoulin, W. Greuger, D. L. Hawksworth, P. S. Herendeen, S. Knapp, K. Marhold, J. Prado, W. F. Prud’homme van Reine, G. F. Smith, J. H. Wiersema & N. J. Turland. (eds.). 2012. International code of nomenclature for algae, fungi, and plants (Melbourne Code). Koenigstein, Germany: Koelz Scientific Books. (Regnum Vegetabile 154.) (Accessed July 10, 2015.)
  180. McPartland, J. M. 1997. Cannabis as repellent and pesticide. Journal of the International Hemp Asociation 4(2): 87–92.Google Scholar
  181. ——— 1998. A survey of hemp diseases and pests. Pp 109–131. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), London.Google Scholar
  182. ——— 2001. Advantages of polypharmaceutical herbal Cannabis compared to single ingredient, synthetic tetrahydrocannabinoid. Irregularly paginated. In: Nova Institute (corporate ed.), Bioresource hemp & other fibre crops: proceedings of the symposium, Wolfsburg, Germany, Sept. 13–16, 2000. Nova Institute, Hürth.Google Scholar
  183. ——— & G. W. Guy. 2004. The evolution of Cannabis and coevolution with the cannabinoid receptor – a hypothesis. Pp 71–101. In: G. W. Guy, B. A. Whittle, & P. J. Robson (eds). The medicinal uses of Cannabis and cannabinoids. Pharmaceutical Press, London.Google Scholar
  184. ——— & V. Mediavilla. 2002. Noncannabinoid components. Pp 401–409. In: F. Grotenhermen & E. Russo (eds). Cannabis and cannabinoids. Pharmacology, toxicology, and therapeutic potential. Haworth Integrative Healing Press, Binghamton.Google Scholar
  185. ——— & E. B. Russo. 2001. Cannabis and cannabis extracts: greater than the sum of their parts? Journal of Cannabis Therapeutics 1: 103–132.CrossRefGoogle Scholar
  186. ———, R. C. Clarke & D. P. Watson. 2000. Hemp diseases and pests: management and biological control. CABI, Wallingford.CrossRefGoogle Scholar
  187. ———, V. Di Marzo, L. De Petrocellis, A. Mercer & M. Glass. 2001. Cannabinoid receptors are absent in insects. Journal of Comparative Neurology 436: 423–429.PubMedCrossRefGoogle Scholar
  188. Mechoulam, R. 2012. Cannabis – a valuable drug that deserves better treatment. Mayo Clinic Proceedings 87(2): 107–109.PubMedCentralPubMedCrossRefGoogle Scholar
  189. Mechtler, K., J. Bailer & K. de Hueber. 2004. Variations of Δ9-THC content in single plants of hemp varieties. Industrial Crops and Products 19: 19–24.CrossRefGoogle Scholar
  190. Mediavilla, V. & S. Steinemann. 1997. Essential oil of Cannabis sativa L. strains. Journal of the International Hemp Association 4(2): 80–82.Google Scholar
  191. Meier, C. & V. Mediavilla. 1998. Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. Journal of the International Hemp Association 5(1): 16–20.Google Scholar
  192. Merlin, M. D. 1972. Man and marijuana: Some aspects of their ancient relationship. Associated University Presses, Cranbury.Google Scholar
  193. Migalj, N. D. 1969. Morphology of hemp (Cannabis L.) pollen. Botanicheskiy Zhurnal (Leningrad) 54: 274–276. (In Russian).Google Scholar
  194. Mikuriya, T. H. 1969. Marijuana in medicine: past, present and future. California Medicine 110(1): 34–40.PubMedCentralPubMedGoogle Scholar
  195. Miller, N. G. 1970. The genera of the Cannabaceae in the Southeastern United States. Journal of the Arnold Arboretum 51: 185–203.Google Scholar
  196. Minelli, A. 2003. Biological systematics: the state of the art. Springer, New York.Google Scholar
  197. Mohan Ram, H. Y. & V. S. Jaiswal. 1970. Induction of female flowers on male plants of Cannabis sativa by 2-chlorothane phosphonic acid. Experimentia 26: 214–216.CrossRefGoogle Scholar
  198. Mölleken, H. & R. R. Theimer. 1997. Survey of minor fatty acids in Cannabis sativa L. fruits of various origins Pp. 500–504. In: Nova Institute (corporate ed.), Proceedings of the bioresource hemp symposium, Frankfurt am Main, Germany, Feb. 27–March 2, 1997. Nova Institute, Hürth. (In German.)Google Scholar
  199. ———, R. Mothes & S Dudek. 2001. Quality of hemp fruits and hemp oil in relation to the maturity of the fruits. Irregularly paginated. In: Nova Institute (corporate ed.), Bioresource hemp & other fibre crops: proceedings of the symposium, Wolfsburg, Germany, Sept. 13–16, 2000. Nova Institute, Hürth.Google Scholar
  200. Montford, S. & E. Small. 1999a. Measuring harm and benefit: the biodiversity friendliness of Cannabis sativa. Global Biodiversity 8(4): 2–13.Google Scholar
  201. ——— & ———. 1999b. A comparison of the biodiversity friendliness of crops with special reference to hemp (Cannabis sativa). Journal of the International Hemp Association 6(2): 53–63.Google Scholar
  202. Mustafa, A. F., J. J. McKinnon & D. A. Christensen. 1999. The nutritive value of hemp meal for ruminants. Canadian Journal of Animal Science 79: 91–95.CrossRefGoogle Scholar
  203. Nayak, A. P., B. J. Green, G. Sussman, N. Berlin, H. Lata, S. Chandra, M. A. ElSohly, J. M. Hettick & D. H. Beezhold. 2013. Characterization of Cannabis sativa allergens. Annals of Allergy, Asthma & Immunology 111: 32–37.CrossRefGoogle Scholar
  204. Nesom, G. L. 2011. Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron 13: 1–33.Google Scholar
  205. Nobel, P. S. 1976. Photosynthetic rates of sun versus shade leaves of Hyptis emoryi Torr. Plant Physiology 58: 218–223.PubMedCentralPubMedCrossRefGoogle Scholar
  206. Novak, J., K. Zitterl-Eglseer, S. G. Deans & C. M. Franz. 2001. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour and Fragrance Journal 16: 259–262.CrossRefGoogle Scholar
  207. Onaivi, E. S., T. Sugiura & V. di Marzo (eds). 2005. Endocannabinoids: the brain and body’s marijuana and beyond. CRC Press, Boca Raton.Google Scholar
  208. Oner, S. T. 2011a. Cannabis indica: the essential guide to the world’s finest marijuana strains, Vol. 1. Green Candy Press, San Francisco.Google Scholar
  209. ——— 2011b. Cannabis indica: the essential guide to the world’s finest marijuana strains, Vol. 2. Green Candy Press, San Francisco.Google Scholar
  210. ——— 2012. Cannabis sativa: the essential guide to the world’s finest marijuana strains. Green Candy Press, San Francisco.Google Scholar
  211. Oomah, B. D., M. Busson, D. V. Godfrey & J. C. G. Drover. 2002. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chemistry 76: 33–43.CrossRefGoogle Scholar
  212. Oost, E. H. 1989. Typification of Brassica oleracea L. (Cruciferae) and its Linnaean varieties. Botanical Journal of the Linnean Society 101: 329–345.CrossRefGoogle Scholar
  213. Pacifico, D., F. Miselli, M. Micheler, A. Carboni, P. Ranalli & G. Mandolino. 2006. Genetics and marker-assisted selection of the chemotype in Cannabis sativa L. Molecular Breeding 17: 257–268.CrossRefGoogle Scholar
  214. ———, ———, A. Carboni, A. Moschella & G. Mandolino. 2008. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 160: 231–240.CrossRefGoogle Scholar
  215. Padial, J. M. & I. de la Riva. 2006. Taxonomic inflation and the stability of species lists: the perils of ostrich’s behavior. Systematic Biology 55: 859–867.PubMedCrossRefGoogle Scholar
  216. Paris, M., F. Boucher & L. Cosson. 1975. The constituents of Cannabis sativa pollen. Economic Botany 29: 245–253.CrossRefGoogle Scholar
  217. Pate, D. W. 1983. Possible role of ultraviolet radiation in evolution of Cannabis chemotypes. Economic Botany 37: 396–405.CrossRefGoogle Scholar
  218. ——— 1994. Chemical ecology of Cannabis. Journal of the International Hemp Association 1(2): 29. 32–37.Google Scholar
  219. ——— 1998a. The phytochemistry of Cannabis: its ecological and evolutionary implications. Pp 21–42. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), London.Google Scholar
  220. ——— 1998b. Hemp seed: a valuable food source. Pp 243–255. In: P. Ranalli (ed). Advances in hemp research. Food Products Press (of Haworth Press), London.Google Scholar
  221. Peil, A., H. Flachowsky, E. Schumann & W. E. Weber. 2003. Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.). Theoretical and Applied Genetics 107: 102–109.PubMedGoogle Scholar
  222. Pertwee, R. G. (ed). 2014. Handbook of cannabis. Oxford University Press, Oxford.Google Scholar
  223. Peterken, G. F. 1981. Woodland conservation and management. Chapman and Hall, London.CrossRefGoogle Scholar
  224. Phillips, R., R. Turk, J. Manno, D. Crim & R. Forney. 1970. Seasonal variation in cannabinolic content of Indiana marihuana. Journal of Forensic Sciences 15: 191–200.PubMedGoogle Scholar
  225. Pickens, J. T. 1981. Sedative activity of cannabis in relation to its Δ1-trans-tetrahydrocannabinol and cannabidiol content. British Journal of Pharmacology 72: 649–656.PubMedCentralPubMedCrossRefGoogle Scholar
  226. Pickersgill, B., M. I. Chacón Sánchez & D. G. Debouck. 2003. Multiple domestications and their taxonomic consequences: the example of Phaseolus vulgaris. Schriften zu Genetischen Ressourcen 22: 71–83.Google Scholar
  227. Popular Mechanics. 1938. New billion-dollar crop. Popular Mechanics 144A: 238–239.Google Scholar
  228. Potter, D. J. 2014. Cannabis horticulture. Pp 65–88. In: R. G. Pertwee (ed). Handbook of cannabis. Oxford University Press, Oxford.CrossRefGoogle Scholar
  229. ——— & P. Duncombe. 2012. The effect of electrical lighting power and irradiance on indoor-grown Cannabis potency and yield. Journal of Forensic Sciences 57: 618–622.PubMedCrossRefGoogle Scholar
  230. Przybylski, R., J. Moes & A. Sturko. 1997. Effect of growing conditions on composition of hemp oils. Pp. 505–514. In: Nova Institute (corporate ed.), Bioresource hemp: proceedings of the symposium, Frankfurt am Main, Germany, Feb. 27–March 2, 1997. Nova Institute, Hürth.Google Scholar
  231. Qaiser, M. 1973. Cannabaceae. Pp 1–3. In: E. Nasir & S. I. Ali (eds). Flora of West Pakistan, issue 44. University of Karachi, Karachi.Google Scholar
  232. Radwan, M. M., M. A. ElSohly, D. Slade, S. A. Ahmed, I. A. Khan & S. A. Ross. 2009. Biologically active cannabinoids from high-potency Cannabis sativa. Journal of Natural Products 72: 906–911.PubMedCrossRefGoogle Scholar
  233. Raie, M. Y., A. Ahmad, M. Ashraf & S. Hussain. 1995. Studies of Cannabis sativa and Sorghum bicolor oils. Fat Science Technology 97: 428–429.Google Scholar
  234. Ratcliffe, D. A. (ed). 1977. A nature conservation review, Vol. 2. Cambridge University Press, Cambridge.Google Scholar
  235. Renner, S. S. & R. E. Ricklefs. 1995. Dioecy and its correlates in the flowering plants. American Journal of Botany 82: 596–606.CrossRefGoogle Scholar
  236. Rindos, D. 1984. The origins of agriculture: An evolutionary perspective. Academic, New York.Google Scholar
  237. Rode, J., K. In-Chol, B. Saal, H. Flachowsky, U. Kriese & W. E. Weber. 2005. Sex-linked SSR markers in hemp. Plant Breeding 124: 167–170.CrossRefGoogle Scholar
  238. Rosenthal, E. 2001. The big book of buds. Marijuana varieties from the world’s great seed breeders. Quick American Archives, Oakland.Google Scholar
  239. ——— 2004. The big book of buds: 2. More marijuana varieties from the world’s great seed breeders. Quick American Archives, Oakland.Google Scholar
  240. ——— 2007. The big book of buds: 3. More marijuana varieties from the world’s great seed breeders. Quick American, Oakland.Google Scholar
  241. ——— 2010. The big book of buds: 4. Marijuana varieties from the world’s great seed breeders. Quick American Publishing, Oakland.Google Scholar
  242. Ross, S. A. & M. A. ElSohly. 1996. The volatile oil composition of fresh and air-dried buds of Cannabis sativa. Journal of Natural Products 59: 49–51.PubMedCrossRefGoogle Scholar
  243. ———, Z. Mehmedic, T. P. Murphy & M. A. ElSohly. 2000. GC-MS analysis of the total Δ9-THC content of both drug- and fiber-type Cannabis seeds. Journal of Analytical Toxicology 24: 715–717.PubMedCrossRefGoogle Scholar
  244. ———, M. A. ElSohly, Z. Mehmedic, T. P. Murphy, M. A. ElSohly, M. A. ElSohly, G. N. N. Sultana, Z. Mehmedic, C. F. Hossain & S. Chandra. 2005. Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochemical Analysis 16: 45–48.PubMedCrossRefGoogle Scholar
  245. Ross-Ibara, J., P. L. Morrell & B. S. Gaut. 2007. Plant domestifcation, a unique opportunity to identify the genetic basis of adaptation. Pp 205–224. In: J. C. Avise & F. J. Ayala (eds). In the light of evolution. Volume 1: adaptation and complex design. National Academies Press, Washington, D.C.Google Scholar
  246. Roulac, J. W. 1997. Hemp horizons: the comeback of the world’s most promising plant. Chelsea Green Publishing, White River Junction.Google Scholar
  247. Russo, E.B. 2003. Introduction: cannabis from pariah to prescription. Journal of Cannabis Therapeutics 3: 1–29.Google Scholar
  248. ——— 2007. History of cannabis and its preparations in saga, science, and sobriquet. Chemistry & Biodiversity 4: 1614–1648.CrossRefGoogle Scholar
  249. ——— 2011. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology 163: 1344–1364.PubMedCentralPubMedCrossRefGoogle Scholar
  250. ——— & G. W. Guy. 2006. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Medical Hypotheses 66: 234–246.PubMedCrossRefGoogle Scholar
  251. ——— & J. M. McPartland. 2003. Cannabis is more than simply Δ9-tetrahydrocannabinol. Psychopharmacology 165: 431–432.PubMedGoogle Scholar
  252. ———, H. E. Jiang, X. Li, A. Sutton, A. Carboni, F. del Bianco, G. Mandolino, D. J. Potter, Y.-X. Zhao, S. Bera, Y.-B. Zhang, E.-G. Lü, D. K. Ferguson, F. Hueber, L.-C. Zhao, C.-J. Liu, Y.-F. Wang & C.-S. Li. 2008. Phytochemical and genetic analyses of ancient cannabis from Central Asia. Journal of Experimental Botany 59: 4171–4182.PubMedCentralPubMedCrossRefGoogle Scholar
  253. Ryan, D., A. J. Drysdale, R. G. Pertwee & B. Platt. 2006. Differential effects of cannabis extracts and pure plant cannabinoids on hippocampal neurones and glia. Neuroscience Letters 408: 236–241.PubMedCrossRefGoogle Scholar
  254. Sakamoto, K., Y. Akiyama, K. Fukui, H. Kamada & S. Satoh. 1998. Characterization: genome size and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 3: 459–464.CrossRefGoogle Scholar
  255. ———, N. Ohmido, K. Fukui, H. Kamada & S. Satoh. 2000. Site-specific accumalation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Molecular Biology 44: 723–732.PubMedCrossRefGoogle Scholar
  256. ———, T. Abe, T. Matsuyama, S. Yoshida, N. Ohmido, K. Fukui & S. Satoh. 2005. RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa L. Genome 48: 931–936.PubMedCrossRefGoogle Scholar
  257. Sakuma, S., B. Salomon & T. Komatsuda. 2011. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant & Cell Physiology 52: 738–749.CrossRefGoogle Scholar
  258. Sarlikioti, V., P. H. B. de Visser, G. H. Buck-Sorlin & L. F. M. Marcelis. 2011. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Annals of Botany 108: 1065–1073.PubMedCentralPubMedCrossRefGoogle Scholar
  259. Schaffner, J. H. 1926. The change of opposite to alternate phyllotaxis and repeated rejuvenations in hemp by means of changed photoperiodicity. Ecology 7: 315–325.CrossRefGoogle Scholar
  260. Scholz, H. 1957. Wild hemp as a ruderal plant of Central Europe. Verhandlungen des Botanischen Vereins der Provinz Brandenburgund der angrenzenden Länder 83(97): 61–64. (In German).Google Scholar
  261. Schultes, R. E. 1970. Random thoughts and queries on the botany of Cannabis. Pp 11–38. In: R. B. Joyce & S. H. Curry (eds). The botany and chemistry of Cannabis. J. & A. Churchill, London.Google Scholar
  262. ——— & A. Hofmann. 1980. The botany and chemistry of hallucinogens, ed. 2d. Thomas, Springfield.Google Scholar
  263. ———, W. M. Klein, T. Plowman & T. E. Lockwood. 1974. Cannabis: an example of taxonomic neglect. Botanical Museum Leaflets, Harvard University 23: 337–367.Google Scholar
  264. Schultz, T. R. & T. P. McGlynn. 2000. The interactions of ants with other organisms. Pp 35–44. In: D. Agosti, J. Majer, L. Alonso, & T. R. Schultz (eds). Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, D.C.Google Scholar
  265. ———, U. G. Mueller, C. R. Currie & S. A. Rehner. 2005. Reciprocal illumination: a comparison of agriculture in humans and in fungus-growing ants. Pp 149–190. In: F. E. Vega & M. Blackwell (eds). Insect–fungal associations: ecology and evolution. Oxford University Press, New York.Google Scholar
  266. Segelman, A. B., R. D. Sofia, F. P. Segelman, J. J. Harakal & L. C. Knobloch. 1974. Cannabis sativa L. (marijuana) V: pharmacological evaluation of marijuana aqueous extract and volatile oil. Journal of Pharmaceutical Sciences 26: 962–964.CrossRefGoogle Scholar
  267. Serebriakova, T. Y. 1940. Fiber plants, Volume 5, Part 1. In: E. V. Wulff (ed). Flora of cultivated plants. State Printing Office, Moscow. (In Russian).Google Scholar
  268. ——— & I. A. Sizov. 1940. Cannabinaceae Lindl. Pp 1–53. In: N. I. Vavilov (ed). Kulturnaja Flora SSSR Vol. 5. Kolos, Moscow. (In Russian).Google Scholar
  269. Shao, H., S.-J. Song & R. C. Clarke. 2003. Female-associated DNA polymorphisms of hemp (Cannabis sativa L.). Journal of Industrial Hemp 8(1): 5–9.CrossRefGoogle Scholar
  270. Sharma, G. K. 1979. Significance of eco-chemical studies of Cannabis. Science Culture 45: 303–307.Google Scholar
  271. Shoyama, Y., F. Taura & S. Morimoto. 2001. Expression of tentrahydrocannabinoilic acid synthase in tobacco. 9. In: Proceedings, 2001 symposium on the cannabinoids. International Cannabinoid Research Society, Burlington.Google Scholar
  272. Sikora, V., J. Berenji & D. Latković. 2011. Influence of agroclimatic conditions on content of main cannabinoids in industrial hemp (Cannabis sativa L.). Genetika 43: 449–456.CrossRefGoogle Scholar
  273. Sirikantaramas, S., F. Taura, Y. Tanaka, Y. Ishikawa, S. Morimoto & Y. Shoyama. 2005. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiology 46: 1578–1582.PubMedCrossRefGoogle Scholar
  274. ———, ———, S. Morimoto & Y. Shoyama. 2007. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Current Pharmaceutical Biotechnology 8: 237–243.PubMedCrossRefGoogle Scholar
  275. Small, E. 1972a. Interfertility and chromosomal uniformity in Cannabis. Canadian Journal of Botany 50: 1947–1949.CrossRefGoogle Scholar
  276. ——— 1972b. The hemp problem in Canada. Greenhouse Garden Grass 11(3): 46–52.Google Scholar
  277. ——— 1974. American law and the species problem in Cannabis. Microgram 7: 131–132.Google Scholar
  278. ——— 1975a. Morphological variation of achenes of Cannabis. Canadian Journal of Botany 53: 978–987.CrossRefGoogle Scholar
  279. ——— 1975b. American law and the species problem in Cannabis: science and semantics. Bulletin on Narcotics 27(3): 1–20.PubMedGoogle Scholar
  280. ——— 1975c. Essential considerations of the taxonomic debate in Cannabis. Journal of Forensic Sciences 20: 739–741.PubMedCrossRefGoogle Scholar
  281. ——— 1975d. On toadstool soup and legal species of Cannabis. Plant Science Bulletin 21: 34–39.Google Scholar
  282. ——— 1975e. The case of the curious “Cannabis,”. Economic Botany 29: 254.CrossRefGoogle Scholar
  283. ——— 1976. The forensic taxonomic debate on Cannabis: semantic hokum. Journal of Forensic Sciences 21: 239–251.PubMedCrossRefGoogle Scholar
  284. ——— 1977. Nomenclatural nonsense and legal marijuana plants. Bulletin of the Pacific Tropical Botanical Garden 7(1): 1–6.Google Scholar
  285. ——— 1978a. A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Systematic Botany 3: 37–76.CrossRefGoogle Scholar
  286. ——— 1978b. A numerical taxonomic analysis of the Daucus carota complex. Canadian Journal of Botany 56: 248–276.CrossRefGoogle Scholar
  287. ——— 1979a. The species problem in Cannabis: science and semantics. Volume 1, Science. Corpus, Toronto.Google Scholar
  288. ——— 1979b. The species problem in Cannabis: science and semantics. Volume 2, Semantics. Corpus, Toronto.Google Scholar
  289. ——— 1997. Cannabaceae. Pp 381–387. In: Flora North America Editorial Committee (ed). Flora of North America, north of Mexico, Vol. 3. Oxford University Press, New York.Google Scholar
  290. ——— 2004. Narcotic plants as sources of medicinals, nutraceuticals, and functional foods. Pp. 11–67. In: F.-F. Hou, H.-S. Lin, M.-H. Chou & T.-W. Chang (eds.), Proceedings of the international symposium on the development of medicinal plants, 24–25 Aug. 2004, Hualien. Hualien District Agricultural Research and Extension Station, Hualien.Google Scholar
  291. ——— 2007. Cannabis as a source of medicinals, nutraceuticals, and functional foods. Pp 1–39. In: S. N. Acharya & J. E. Thomas (eds). Advances in Medicinal Plant Research. Trivandrum, Research Signpost / Transworld Research Network, Kerala.Google Scholar
  292. ——— 2009. Top 100 food plants: the world’s most important culinary crops. National Research Council Press, Ottawa.Google Scholar
  293. ——— 2011. Alfalfa and relatives: evolution and classification of Medicago. NRC Research Press, Ottawa, and CABI, Wallingford.Google Scholar
  294. ——— 2012. Hemp. Pp 220–222. In: S. Fredericks, L. Shen, S. Thompson, & D. Vasey (eds). The Berkshire Encyclopedia of Sustainability: Vol. 4. Natural Resources and Sustainability. Berkshire Publishing, Great Barrington.Google Scholar
  295. ——— 2013. North American cornucopia: top 100 indigenous food plants. CRC Press, Boca Raton.Google Scholar
  296. ——— 2014a. Blossoming treasures of biodiversity. 44. Saguaro – threatened monarch of the desert. Biodiversity 15(1): 39–53.CrossRefGoogle Scholar
  297. ——— 2014b. Hemp fiber and composites for the 21st century. Pp 29–64. In: V. K. T. Thakur & J. Njuguna (eds). Natural fibers and composites. Studium Press, Houston.Google Scholar
  298. ——— & T. Antle. 2003. A preliminary study of pollen dispersal in Cannabis sativa. Journal of Industrial Hemp 8(2): 37–50.CrossRefGoogle Scholar
  299. ——— & ———. 2007. A study of cotyledon asymmetry in Cannabis sativa. Journal of Industrial Hemp 12(1): 3–14.CrossRefGoogle Scholar
  300. ——— & H. D. Beckstead. 1973a. Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 35: 144–165.Google Scholar
  301. ——— & ———. 1973b. Cannabinoid phenotypes in Cannabis. Nature 245: 147–148.PubMedCrossRefGoogle Scholar
  302. ——— & B. Brookes. 2012. Temperature and moisture content for storage maintenance of germination capacity of seeds of industrial hemp, marijuana, and ditchweed forms of Cannabis sativa. Journal of Natural Fibers 9(4): 240–255.CrossRefGoogle Scholar
  303. ——— & P. M. Catling. 2009. Blossoming treasures of biodiversity. 27. Cannabis – Dr. Jekyll and Mr. Hyde. Biodiversity 10(1): 31–38.CrossRefGoogle Scholar
  304. ——— & A. Cronquist. 1976. A practical and natural taxonomy for Cannabis. Taxon 25: 405–435.CrossRefGoogle Scholar
  305. _____ & D. Marcus. 2000. Hemp germplasm trials in Canada. Irregularly paginated. In: Nova Institute (corporate ed.), Proceedings third international symposium bioresource hemp. Nova Corporation, Hürth.Google Scholar
  306. ——— & ———. 2002. Hemp – a new crop with new uses for North America. Pp 284–326. In: J. Janick & A. Whipkey (eds). Trends in new crops and new uses. ASHS Press, Alexandria.Google Scholar
  307. ——— & ———. 2003. Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Economic Botany 57: 545–558.CrossRefGoogle Scholar
  308. ——— & S. G. U. Naraine. 2015. Size matters: evolution of large drug-secreting resin glands in elite pharmaceutical strains of Cannabis sativa (marijuana). Genetic Resources and Crop Evolution. doi: 10.1007/s10722-015-0254-2.Google Scholar
  309. ———, H. D. Beckstead & A. Chan. 1975. The evolution of cannabinoid phenotypes in Cannabis. Economic Botany 29: 219–232.CrossRefGoogle Scholar
  310. ———, P. Jui & L. P. Lefkovitch. 1976. A numerical taxonomic analysis of Cannabis with special reference to species delimitation. Systematic Botany 1: 67–84.CrossRefGoogle Scholar
  311. ———, T. Pocock & P. B. Cavers. 2003. The biology of Canadian weeds. 119. Cannabis sativa L. Canadian Journal of Plant Sciences 83: 217–237.CrossRefGoogle Scholar
  312. ———, D. Marcus, A. McElroy & G. Butler. 2007. Apparent increase in biomass and seed productivity in hemp (Cannabis sativa) resulting from branch proliferation caused by the European corn borer (Ostrinia nubilalis). Journal of Industrial Hemp 12(1): 15–26.CrossRefGoogle Scholar
  313. Smith, M. H. 2012. Heart of dankness. Underground botanists, outlaw farmers, & the race for the Cannabis Cup. McClelland & Stewart, Toronto.Google Scholar
  314. Snoeijer, W. 2002. A checklist of some Cannabaceae cultivars. Part a: Cannabis. Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden.Google Scholar
  315. Spelman, K. 2009. “Silver bullet” drugs vs. traditional herbal remedies: perspectives on malaria. HerbalGram 84: 44–55.Google Scholar
  316. Spencer, R. D. 1999. Cultivated plants and the codes of nomenclature – towards the resolution of a demarcation dispute. Pp 171–181. In: S. Andrews, A. C. Leslie, & C. Alexander (eds). Taxonomy of cultivated plants: third international symposium. Royal Bontanic Gardens, Kew.Google Scholar
  317. ——— & R. G. Cross. 2007a. The international code of botanical nomenclature (ICBN), the international code of nomenclature for cultivated plants (ICNCP), and the cultigen. Taxon 56: 938–940.CrossRefGoogle Scholar
  318. ——— & ———. 2007b. The cultigen. Pp. 163–167. In: R. G. van den Berg, N. Groendijk-Wilders, C. Alexander & W. L. A. Hetterscheid (eds.), Proceedings of the fifth international symposium on the taxonomy of cultivated plants. International Society for Horticultural Science, Leuven.Google Scholar
  319. Spooner, D. M., R. G. van den Berg, W. L. A. Hetterscheid & W. A. Brandenburg. 2003. Plant nomenclature and taxonomy. An horticultural and agronomic perspective. Horticultural Reviews 28: 1–59.Google Scholar
  320. Stearn, W. T. 1952. Proposed international code of nomenclature for cultivated plants. Historical introduction. Journal of the Royal Horticultural Society 77: 157–173.Google Scholar
  321. Stokes, J. R., R. Hartel, L. B. Ford & T. B. Casale. 2000. Cannabis (hemp) positive skin tests and respiratory symptoms. Annals of Allergy, Asthma and Immunology 85: 238–240.PubMedCrossRefGoogle Scholar
  322. Stout, J. M., Z. Boubakir, S. J. Ambrose, R. W. Purves & J. E. Page. 2012. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. The Plant Journal 71: 353–365.PubMedGoogle Scholar
  323. Styles, B. T. (ed). 1986. Infraspecific classification of wild and cultivated plants. Clarendon, Oxford.Google Scholar
  324. Sytsma, K. J., J. Morawetz, J. C. Pires, M. Nepokroeff, E. Conti, M. Zjhra, J. C. Hall & M. W. Chase. 2002. Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-trnF, and ndhF sequences. American Journal of Botany 89: 1531–1546.PubMedCrossRefGoogle Scholar
  325. Taura, F., S. Morimoto, Y. Shoyama & R. Mechoulam. 1995. First direct evidence for the mechanism of delta-1-tetrahydrocannabinoloic acid biosynthesis. Journal of the American Chemical Society 38: 9766–9767.CrossRefGoogle Scholar
  326. ———, ——— & ———. 1996. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. The Journal of Biological Chemistry 271: 17411–17416.PubMedCrossRefGoogle Scholar
  327. ———, S. Sirikantaramas, Y. Shoyama, K. Yoshikai, Y. Shoyama & S. Morimoto. 1997. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters 581: 2929–2934.CrossRefGoogle Scholar
  328. Thomas, T. G., S. K. Sharma, A. Prakash & B. R. Sharma. 2000. Insecticidal properties of esential oil of Cannabis sativa Linn. against mosquito lavae. Entomon 25: 21–24.Google Scholar
  329. Tournois, J. 1912. Influence de la lumière sur la floraison du houblon japonais et du chanvre déterminées par des semis haitifs. Comptes Rendus Hebdomadaires des Séances de l’Academie des Sciences, Paris 155: 297–300.Google Scholar
  330. Toyota, M., T. Shimamura, H. Ishii, M. Renner, J. Braggins & Y. Asakawa. 2002. New bibenzyl cannabinoid from the New Zealand liverwort Radula marginata. Chemical and Pharmaceutical Bulletin (Tokyo) 50: 1390–1392.Google Scholar
  331. Turner, C., P. Fetterman, K. Hadley & J. Urbanek. 1975. Constituents of Cannabis sativa L. X. Cannabinoid profile of a Mexican variant and its possible correlation to pharmacological activity. Acta Pharmaceutica Jugoslavica 25: 7–15.Google Scholar
  332. Turner, J. C., J. K. Hemphill & P. G. Mahlberg. 1980. Trichomes and cannabinoid content of developing leaves and bracts of Cannabis sativa L. (Cannabaceae). American Journal of Botany 67: 1397–1406.CrossRefGoogle Scholar
  333. ———, ——— & ———. 1981a. Interrelationships of glandular trichomes and cannabinoid content. I. Developing pistillate bracts of Cannabis sativa L. (Cannabaceae). Bulletin on Narcotics 33(2): 59–69.PubMedGoogle Scholar
  334. ———, ——— & ———. 1981b. Interrelationships of glandular trichomes and cannabinoid content. II. Developing vegetative leaves of Cannabis sativa L. (Cannabaceae). Bulletin on Narcotics 33(3): 63–71.PubMedGoogle Scholar
  335. Tutin, T. G. & J. R. Edmonson. 1993. Cannabaceae. Pp 78. In: T. G. Tutin & J. R. Edmonson (eds). Flora Europaea, Volume 1, ed. 2nd. University of Cambridge, Cambridge.Google Scholar
  336. United Nations Office on Drugs and Crime. 2014. World drug report 2014. (Accessed July 10, 2015.)
  337. Valle, J. R., J. E. V. Vieira, J. G. Aucélio & I. F. M. Valio. 1978. Influence of photoperiodism on cannabinoid content of Cannabis sativa L. Bulletin on Narcotics 30(1): 67–68.PubMedGoogle Scholar
  338. Van Bakel, H., J. M. Stout, A. G. Cote, C. M. Tallon, A. G. Sharpe, T. R. Hughes & J. E. Page. 2011. The draft genome and transcriptome of Cannabis sativa. Genome Biology. doi: 10.1186/gb-2011-12-10-r102 (Accessed July 10, 2015.)
  339. Van der Werf, H. M. G. 1994. Crop physiology of fibre hemp (Cannabis sativa L.). Wageningen Agricultural University, Wageningen. (Published Doctoral thesis.)Google Scholar
  340. Vavilov, N. I. 1926. The origin of the cultivation of “primary” crops, in particular of cultivated hemp. Trudy po Prikladnoj Botanike i Selekcii 16(2): 221–233.Google Scholar
  341. ——— 1931. The role of Central Asia in the origin of cultivated plants. Bulletin of Applied Botany, Genetics, and Plant Breeding 26(3): 3–44. (In Russian and English).Google Scholar
  342. Veliky, I. A. & K. Genest. 1972. Growth and metabolites of Cannabis sativa cell suspension cultures. Lloydia 35: 450–456.PubMedGoogle Scholar
  343. Verkaar, H. J. 1986. When does grazing benefit plants? Trends in Ecology and Evolution 1: 168–169.PubMedCrossRefGoogle Scholar
  344. Virovets, V. G. 1996. Selection for non-psychoactive hemp varieties (Cannabis sativa L.) in the CIS (former USSR). Journal of the International Hemp Association 3(1): 13–15.Google Scholar
  345. Vogl, C. R., H. Mölleken, G. Lissek-Wolf, A. Surböck & J. Kobert. 2004. Hemp (Cannabis sativa L.) as a resource for green cosmetics: yield of seed and fatty acid composition of 20 varieties under the growing conditions of organic farming in Austria. Journal of Industrial Hemp 9(1): 51–68.CrossRefGoogle Scholar
  346. Walter, H. 1938. Cannabis. Pp 875–909. In: O. V. Kirchner, E. Loew, C. Schröter, & W. Wangerin (eds). Lebengeschichte der Blütenpflanzen Mitteleuropas, Vol. 2. Eugen Ulment, Stuttgart. (In German).Google Scholar
  347. Watson, D. P. & R. C. Clarke. 1997. The genetic future of hemp. Pp. 122–127. In: Nova Institute (corporate ed.), Proceedings of the bioresource hemp symposium, Frankfurt am Main, Germany, Feb. 27–March 2, 1997. Nova Institute, Hürth.Google Scholar
  348. West-Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford University Press, New York.Google Scholar
  349. Whalley, B. J., J. D. Wilkinson, E. M. Williamson & A. Constanti. 2004. A novel component of cannabis extracts potentiates excitatory synaptic transmission in rat olfactory cortex in vitro. Neuroscience Letters 365: 58–63.PubMedCrossRefGoogle Scholar
  350. Whitman, T. & L. W. Aarssen. 2010. The leaf size/number trade-off in herbaceous angiosperms. Journal of Plant Ecology 3: 49–58.CrossRefGoogle Scholar
  351. Wilkinson, J. D., B. J. Whalley, D. Baker, G. Pryce, A. Constanti, S. Gibbons & E. M. Williamson. 2003. Medicinal cannabis: is Δ9-tetrahydrocannabinol necessary for all its effects? Journal of Pharmacy and Pharmacology 55: 1687–1694.PubMedCrossRefGoogle Scholar
  352. Wirtshafter, D. 1995. Nutrition of hemp seeds and hemp seed oil. Pp. 546–555. In: Nova Institute (corporate ed.), Bioresource hemp – proceedings of the symposium, Frankfurt am Main, Germany, March 2–5, 1995. 2nd edition. Hemptech, Ojai.Google Scholar
  353. Wu, Z., Z.-K. Zhou & B. Bartholomew. 2003. Cannabaceae Endlicher. Pp 74–75. In: W. Zheng-yi & P. H. Raven (eds). Flora of China, Vol. 5. Missouri Botanical Garden Press, St. Louis.Google Scholar
  354. Yampolsky, C. & H. Yampolsky. 1922. Distribution of sex forms in the phanerogamic flora. Gebruder Borntraeger, Leipzig.Google Scholar
  355. Yang, M.-Q., R. van Velzen, F. T. Bakker, A. Sattarian, D.-Z. Li & T.-S. Yi. 2013. Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62: 473–485.CrossRefGoogle Scholar
  356. Zhang, L. L., R. Y. Zhu, J. Y. Chen, J. M. Chen & X. X. Feng. 2008. Seawater-retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochemistry 43: 1195–1201.CrossRefGoogle Scholar
  357. Zhatov, A. I. 1983. Variability of pollen grains of polyploid hemp. Tsitologiya i Genetika 17: 47–51. (In Russian).Google Scholar
  358. Zohary, D. 2004. Unconscious selection and the evolution of domesticated plants. Economic Botany 58: 5–10.CrossRefGoogle Scholar
  359. Zuardi, A. W., J. A. S. Crippa, J. E. C. Hallak, F. A. Moreira & F. S. Guimarães. 2006. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Brazilian Journal of Medical and Biological Research 39: 421–429.PubMedCrossRefGoogle Scholar
  360. ———, J. E. C. Hallak & J. A. S. Crippa. 2012. Interaction between cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC): influence of administration interval and dose ratio between the cannabinoids. Psychopharmacology 219: 247–249.Google Scholar

Copyright information

© The New York Botanical Garden (outside the USA) 2015

Authors and Affiliations

  1. 1.Science and Technology Branch, Agriculture and Agri-Food CanadaOttawaCanada

Personalised recommendations