The Botanical Review

, Volume 81, Issue 2, pp 105–149 | Cite as

The Ecology and Natural History of Foliar Bacteria with a Focus on Tropical Forests and Agroecosystems

  • Eric A. GriffinEmail author
  • Walter P. Carson


Leaves of higher plants comprise perhaps the largest bacterial substrate on earth, yet we know very little about the bacteria that occupy these spaces. In this review, we first examine the ecology and behavior of bacteria that reside on leaf surfaces. Next, we discuss the ecological implications of foliar bacteria that reside in interior portions of leaf tissues. Later, we consider the studies on foliar bacteria in tropical habitats to date. Finally, we examine evidence regarding the potential roles of foliar bacteria in structuring tropical plant communities. Bacteria colonize the phyllosphere via animal vectors or passively from soil, wind, or rain, though there are too few data to determine the relative contributions of these sources to the phyllosphere. Additionally, the degree to which parent plants transmit bacteria to offspring via seed remains unknown. We predict that high temperature, high humidity, low UV radiation, and leaf architecture in the tropical understory enable tropical leaves to support more abundant and diverse bacterial communities compared to temperate leaves. While the extent of competitive interactions among bacteria remains poorly resolved, evidence from agricultural crop species and Arabidopsis thaliana suggests that these interactions cause niche partitioning based on carbon use. The degree to which phyllobacteria and endophytes of tropical plants are pathogenic versus mutualistic or neutral remains unexplored. We hypothesize, however, that the detrimental impact of bacterial pathogens ultimately increases as the abundance of single host tree species increases, which can promote and maintain plant diversity in tropical forests.


Foliar bacteria Tropical forests Agroecosystems Plant diversity Microbial ecology Plant coexistence Endophytes Pathogens 


Las hojas de las plantas superiores constituyen posiblemente el sustrato bacteriológico más extenso en el planeta, sin embargo sabemos muy poco sobre las bacterias que ocupan estos espacios. En este artículo examinamos, en primer lugar, la ecología y el comportamiento de las bacterias que residen en las superficies de las hojas. Luego, discutimos las implicaciones ecológicas de las bacterias foliares que residen en el interior de los tejidos de las hojas. Además, consideramos los estudios sobre bacterias foliares en hábitats tropicales a la fecha. Finalmente examinamos la evidencia que existe sobre el potencial impacto de las bacterias foliares en la estructura de comunidades de plantas tropicales. Las bacterias generalmente colonizan la filosfera a través de vectores animales o pasivamente a través del suelo, el viento o la lluvia, aunque hay poca información para determinar la contribución relativa de estas fuentes a la filosfera. Adicionalmente, no se sabe hasta qué punto ocurre una transmisión bacteriana de progenitor a progenie a través de semillas. Predecimos que las altas temperaturas, la elevada humedad, la baja radiación ultravioleta, y la arquitectura de las hojas en el sotobosque permiten que las hojas tropicales contengan comunidades bacteriológicas más abundantes y diversas en comparación con hojas de clima templado. Aunque el grado de interacciones competitivas entre bacterias aún no ha sido bien entendido, evidencia de especies de interés agronómico y Arabidopsis thaliana sugiere que estas interacciones causan particiones de nicho basadas en el uso de carbono. La naturaleza patógena, mutualista o neutra de las filobacterias y bacterias endófitas de plantas tropicales no se ha explorado hasta el momento. Nuestra hipótesis es, sin embargo, que el impacto negativo de patógenos bacterianos es mayor con el incremento en la abundancia de huéspedes específicos, lo que puede promover y mantener la diversidad de plantas en los bosques tropicales.



We thank Joe Wright, Bert Leigh, Carolin Frank, Shannon Nix, Mike Chips, Sarah Neihaus, Camilo Zalamea, Carolina Sarmiento, the Carson-Pruitt Lab Group, three anonymous reviewers, and in particular Brian Traw and Betsy Arnold for comments on various drafts of this manuscript. We thank Felipe Lacayo for translating the abstract into Spanish. We acknowledge financial support from a National Science Foundation Graduate Research Fellowship, a Smithsonian Tropical Research Institute Predoctoral Fellowship, a Lewis and Clarke Fund for Exploration and Field Research, Sigma Xi Grant-in-Aid of Research, and a CRDF grant from the University of Pittsburgh.

Literature Cited

  1. Abele, S. & M. Pillay. 2007. Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: Implications for banana research in East African highlands. Journal of Crop Improvement 19: 173–191.Google Scholar
  2. Abramovitch, R. B., J. C. Anderson & G. B. Martin. 2006. Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology 7: 601–611.PubMedCentralPubMedGoogle Scholar
  3. Abril, A. B., P. A. Torres & E. H. Buicher. 2005. The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. Journal of Tropical Ecology 21: 103–107.Google Scholar
  4. Aerts, R. 1995. The advantages of being evergreen. Trends in Ecology & Evolution 10: 402–407.Google Scholar
  5. Agrios, G. N. 2005. Plant diseases caused by prokaryotes: bacteria and mollicutes. Pp. 616–704. In: Plant Pathology: Fifth Edition. Elsevier Academic Press, New York, NY, USA.Google Scholar
  6. Ahmad, I., F. Aqil, F. Ahmad, M. Zahin & J. Musarrat. 2008. Quorum sensing in bacteria: potential in plant health protection. Pp 129–154. In: I. Ahmad, J. Pichtel, & S. Hayat (eds). Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-Blackwell, Weinheim, Germany.Google Scholar
  7. Alfano, J. R. & A. Collmer. 1996. Bacterial pathogens in plants: Life up against the wall. The Plant Cell 8: 1683–1698.PubMedCentralPubMedGoogle Scholar
  8. Amato, P., M. Parazols, M. Sancelme, P. Laj, G. Mailhot & A.-M. Delort. 2007. FEMS Microbiology Ecology 59: 242–254.PubMedGoogle Scholar
  9. Anand, R., L. Paul & C. Chanway. 2006. Research on endophytic bacteria: recent advances with forest trees. Pp 89–106. In: B. J. E. Schulz, J. C. Christine, & N. Thomas (eds). Microbial root endophytes. Springer, Berlin, Germany.Google Scholar
  10. Andrews, J. H. 1992. Biological control on the phyllosphere. Annual Review of Phytopathology 30: 603–635.PubMedGoogle Scholar
  11. ——— & R. F. Harris. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology 38: 145–180.Google Scholar
  12. Araujo, W. L., J. Marcon, W. Macchero, J. D. van Elsas, J. W. L. van Vuurde & J. L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 68: 4906–4914.PubMedCentralPubMedGoogle Scholar
  13. Ark, P. A. 1958. Longevity of Xanthomonas malvacearum in dried cotton plants. Plant Disease Reporter 42: 1293.Google Scholar
  14. Arnold, A. E. 2008. Endophytic fungi: hidden components of tropical community ecology. Pp 254–271. In: W. P. Carson & S. A. Schnitzer (eds). Tropical forest community ecology. Wiley-Blackwell Publishing, Oxford, UK.Google Scholar
  15. ———, L. C. Mejía, D. Kyllo, E. I. Rojas, Z. Maynard, N. Robbins & E. A. Herre. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America 100: 15649–15654.Google Scholar
  16. Aryal, B. & G. Neuner. 2010. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162: 1–9.PubMedGoogle Scholar
  17. Asner, G. P., J. M. O. Scurlockl & J. A. Hicke. 2003. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology & Biogeography 12: 191–205.Google Scholar
  18. Augspurger, C. K. 1984. Light requirements of neotropical tree seedlings: A comparative study of growth and survival. Journal of Ecology 72: 777–795.Google Scholar
  19. ———, & C. K. Kelly. 1984. Pathogen mortality of tropical tree seedlings:experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61: 211–217.Google Scholar
  20. Baath, E. & T. H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35: 955–963.Google Scholar
  21. Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E. Addis, R. P. Freckleton & O. T. Lewis. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506: 85–88.PubMedGoogle Scholar
  22. Bailey, M. J., A. K. Lilley & J. P. Diaper. 1996. Gene transfer between microorganisms in the phyllosphere. Pp 102–123. In: C. E. Morris, P. C. Nicot, & C. Nguyen (eds). Aerial plant surface microbiology. Plenum Press, New York, NY, USA.Google Scholar
  23. Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. H. Jones, R. L. Lindroth, M. C. Press, I. Symrnioudis, A. D. Watt & J. B. Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1–16.Google Scholar
  24. Ballio, A., F. Bossa, D. Di Giorgio, P. Ferranti, M. Paci, P. Pucci, A. Scaloni, A. Segre & G. A. Strobel. 1994. Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins. FEBS Letters 355: 96–100.PubMedGoogle Scholar
  25. Bargabus, R. L., N. K. Zidack, J. E. Sherwood & B. J. Jacobsen. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61: 289–298.Google Scholar
  26. ———, ———, ——— & ———. 2004. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control 30: 342–350.Google Scholar
  27. Bascom-Slack, C. A., C. Ma, E. Moore, B. Babbs, K. Fenn, J. S. Greene, B. D. Hann, J. Keehner, E. G. Kelly-Swift, V. Kembaiyan, S. J. Lee, P. Li, D. Y. Light, E. H. Lin, M. A. Schorn, D. Vehkter, L.-A. Boulanger, W. M. Hess, P. N. Vargas, G. A. Strobel & S. A. Strobel. 2009. Multiple, novel biologically active endophytic Actinomycetes isolated from upper Amazonian rainforests. Microbial Ecology 58: 374–383.PubMedGoogle Scholar
  28. Bashan, Y. & Y. Okon. 1981. Inhibition of seed germination and development of tomato plants in soil infested with Pseudomonas tomato. Annals of Applied Biology 98: 413–417.Google Scholar
  29. Bashi, E. & N. J. Fokkema. 1977. Environmental factors limiting growth of Sporobolomyces roseus, an antagonist of Cochliobolus sativus, on wheat leaves. Transactions of the British Mycological Society 68: 17–25.Google Scholar
  30. Basim, E., H. Basim & M. Ozcan. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering 77: 992–996.Google Scholar
  31. Bazzaz, F. A. & S. T. A. Pickett. 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11: 287–310.Google Scholar
  32. Beattie, G. A. 2002. Leaf surface waxes and the process of leaf colonization by microorganisms. Pp 3–26. In: S. E. Lindow, E. I. Hect-Poinar, & V. J. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.Google Scholar
  33. ———. 2011. Water relations in the interaction of foliar bacterial pathogens with plants. Annual Review of Phytopathology 49: 533–555.Google Scholar
  34. ———, & S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology 33:145–172.Google Scholar
  35. ———, & ———. 1999. Bacterial colonization of leaves: A spectrum of strategies. Phytopathology. 89: 353–359.Google Scholar
  36. Berdy, J. 2005. Bioactive microbial metabolites. Journal of Antibiotics 58: 1–26.PubMedGoogle Scholar
  37. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84: 11–18.PubMedGoogle Scholar
  38. ———, & J. Hallmann. 2006. Control of plant pathogenic fungi with bacterial endophytes. Pp. 53–69. In: B. Schulz, C. Boyle & T. Sieder (eds). Microbial root endophytes. Springer, Berlin, Germany.Google Scholar
  39. ———, M. Grube, M. Schloter & K. Smalla. 2014. Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology 5: 148.Google Scholar
  40. ———, N. Roskot, A. Steidle, L. Eberl, A. Zock & K. Smalla. 2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Applied and Environmental Microbiology 68: 3328–3338.Google Scholar
  41. ———, A. Krechel, M. Ditz, R. A. Sikora, A. Ulrich & J. Hallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. Microbial Ecology 51: 215–229.Google Scholar
  42. Bever, J. D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist 157: 465–473.Google Scholar
  43. Bhore, S. J., R. NIithya & C. Ying Loh. 2010. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5: 191–197.PubMedCentralPubMedGoogle Scholar
  44. Bjorklof, K., E.–. L. Nurmiaho-Lassila, N. Klinger, K. Haahtela & M. Romantschuk. 2000. Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. Journal of Applied Microbiology 89: 423–432.PubMedGoogle Scholar
  45. Bjorkman, O. & M. Ludlow. 1972. Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Institution of Washington Yearbook 71: 85–91.Google Scholar
  46. Bock, C. H. & J. H. Graham. 2010. Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker. Plant Disease 94: 725–736.Google Scholar
  47. ———, P. E. Parker & T. R. Gottwald. 2005. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Disease 89: 71–80.Google Scholar
  48. Bodenhausen, N., M. W. Horton & J. Bergelson. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, E56329.PubMedCentralPubMedGoogle Scholar
  49. ———, M. Bortfeld-Miller, M. Ackermann & J. A. Vorholt. 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genetics 10: e1004283.Google Scholar
  50. Boller, T. & S. Y. He. 2009. Innate immunity in plants: an arms race between pathogen recognition receptors in plants and effectors in microbial pathogens. Science 324: 742–744.PubMedCentralPubMedGoogle Scholar
  51. Bonfante, P. & I.-A. Anca. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Review of Microbiology 63: 363–383.PubMedGoogle Scholar
  52. Brader, G., S. Compant, B. Mitter, F. Trognitz & A. Sessitsch. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology 27: 30–37.PubMedCentralPubMedGoogle Scholar
  53. Brandl, M. T. & S. E. Lindow. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology 64: 3256–3263.PubMedCentralPubMedGoogle Scholar
  54. Brotman, Y., J. Lisec, M. Meret, I. Chet, L. Willmitzer & A. Viterbo. 2012. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158: 139–146.PubMedGoogle Scholar
  55. Brown, J. K. M. & M. S. Hovmoller. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537–541.PubMedGoogle Scholar
  56. Bruton, B. D., F. Mitchell, J. Fletcher, S. D. Pair, A. Wayadande, U. Melcher, J. Brady, B. Bextine & T. W. Popham. 2003. Serratia marcescens, a phloem-colonizing, squash bug-transmitted bacterium: causal agent of cucurbit yellow vine disease. Plant Disease 87: 937–944.Google Scholar
  57. Bulgarelli, D., K. Schlaeppi, S. Spaepen, E. V. L. van Themaat & P. Schulze-Lefert. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838.PubMedGoogle Scholar
  58. Bull, C. T., S. H. De Boer, T. P. Denny, G. Firrao, M. Fischer-Le Saux, G. S. Saddler, M. Scortichini, D. E. Stead & Y. Takikawa. 2010. Comprehensive list of names of plant pathogenic bacteria, 1980–2007. Journal of Plant Pathology 92: 551–592.Google Scholar
  59. Burd, M. 2007. Adaptive function of drip tips: a test of the epiphyll hypothesis in Psychotria marginata and Faramea occidentalis (Rubiaceae). Journal of Tropical Ecology 23: 449–455.Google Scholar
  60. Burdon, J. J., A. Wennstrom, T. Elmqvist & G. C. Kirby. 1996. The role of race specific resistance in natural plant populations. Oikos 76: 411–416.Google Scholar
  61. Burse, A., H. Weingart & M. S. Ullrich. 2004. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Applied and Environmental Microbiology 70: 693–703.PubMedCentralPubMedGoogle Scholar
  62. ———, ——— & ———. 2004b. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Molecular Plant-Microbe Interactions 17: 43–54.Google Scholar
  63. Butterworth, J. & H. A. McCartney. 1991. The dispersal of bacteria from leaf surfaces by water splash. Journal of Applied Bacteriology 71: 484–496.Google Scholar
  64. Buttner, D. 2012. Protein export according to schedule: architecture, assembly, and Regulation of type III secretion systems from plant- and animal-pathogenic Bacteria. Microbiology and Molecular Biology Reviews 76: 262–310.PubMedCentralPubMedGoogle Scholar
  65. Cankar, K., H. Kraigher, M. Ravnikar & M. Rupnik. 2005. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters 244: 341–345.PubMedGoogle Scholar
  66. Cannon, P. F. & C. M. Simmons. 2002. Diversity and host preference of leaf endophytic fungi in the Iwokrama Fores Reserve, Guyana. Mycologia 94: 210–220.PubMedGoogle Scholar
  67. Carlier, A. L. & L. Eberl. 2012. The eroded genome of a Psychotria leaf symbiont: hypotheses about lifestyle and interactions with its plant hosts. Environmental Microbiology 14: 2757–2769.PubMedGoogle Scholar
  68. Carpes, T., R. Begnini, S. Matias de Alencar & M. L. Masson. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciencia e Agrotecnologia 31: 1818–1825.Google Scholar
  69. Carrell, A. A. & A. C. Frank. 2014. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology 5: 333.PubMedCentralPubMedGoogle Scholar
  70. Carson W. P., J. Anderson, E. G. Leigh Jr. & S. A. Schnitzer. 2008. Challenges associated with testing and falsifying the Janzen-Connell Hypothesis: a review and critique. Pp. 210–241. In: W. P. Carson & S. A. Schnitzer (eds). Tropical forest community ecology. Wiley-Blackwell Publishing, Oxford, UK.Google Scholar
  71. Ceballos, I., S. Mosquera, M. Angulo, J. J. Mira, L. E. Argel, D. Uribe-Velez, M. Romez-Tabarez, S. Orduz-Peralta & V. Villegas. 2012. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microbial Ecology 64: 641–653.PubMedGoogle Scholar
  72. Cha, C., P. Gao, Y.-C. Chen, P. D. Shaw & S. P. Farrand. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Molecular Plant-Microbe Interactions 11: 1119–1129.PubMedGoogle Scholar
  73. Chang, W.–S., M. van de Mortel, L. Nielsen, G. Nino de Guzman, X. Li & L. J. Halverson. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions.  Journal of Bacteriology 189: 8290–8299.Google Scholar
  74. Chapman, J. W., D. R. Reynolds & K. Wilson. 2015. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecology Letters. doi: 10.1111/ele.12407.PubMedGoogle Scholar
  75. Chazdon, R. L. & N. Fletcher. 1984. Light environments of tropical forests. Pp 553–564. In: E. Medina, H. A. Mooney, & C. Vazquez-Yanes (eds). Physiological ecology of plants of the wet tropics. Dr. W. Junk Publishers, The Hague, Netherlands.Google Scholar
  76. Choong, M. F., P. W. Lucas, J. S. Y. Ong, B. Pereira, H. T. W. Tan & I. M. Turner. 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121: 597–610.Google Scholar
  77. Christie, P. J., N. Whitaker & C. Gonzalez-Rivera. 2014. Mechanism and structure of the bacterial type IV secretion systems. Biochimica et Biophysica Acta 1843: 1578–1591.PubMedGoogle Scholar
  78. Christner, B. C., C. E. Morris, C. M. Foreman, R. Cai & D. C. Sands. 2008. Ubiquity of biological ice nucleators in snowfall. Science 319: 1214.PubMedGoogle Scholar
  79. CIA. 2010. The world factbook.Google Scholar
  80. Cipollini, D., S. Enright, M. B. Traw & J. Bergelson. 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology 13: 1643–1653.PubMedGoogle Scholar
  81. Coley, P. D. & M. T. Aide. 1991. A comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. Pp 25–49. In: P. W. Price, T. M. Lewinsohn, G. W. Fernandes, & W. W. Benson (eds). Plant-animal interactions: evolutionary ecology in tropical and temperate regions. John Wiley & Sons, New York, NY, USA.Google Scholar
  82. ———, & J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305–335.Google Scholar
  83. Coll, N. S., P. Epple & J. L. Dangl. 2011. Programmed cell death in the plant immune system. Cell Death & Differentiation 18: 1247–1256.Google Scholar
  84. Collins, D. P. & B. J. Jacobsen. 2003. Optimizing a Bacillus subtilize isolate for control of sugar beet Cercospora leaf spot. Biological Control 26: 153–161.Google Scholar
  85. Comins, H. N. & I. R. Noble. 1985. Dispersal, variability, and transient niches: species coexistence in a uniformly variable environment. The American Naturalist 126: 706–723.Google Scholar
  86. Comita, L. S., S. A. Queenborough, S. J. Murphy, J. L. Eck, K. Xu, M. Krishnadas, N. Beckman & Y. Zhu. 2014. Testing predictions of the Jansen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and distance-dependent seed and seedling survival. Journal of Ecology 102: 845–856.PubMedCentralPubMedGoogle Scholar
  87. Compant, S., C. Clement & A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry 42: 669–678.Google Scholar
  88. ———, J. Nowak, T. Coenye, C. Clement & E. A. Barka. 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews 32: 607–626.Google Scholar
  89. Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp 298–312. In: P. J. den Boer & G. R. Gradwell (eds). Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands.Google Scholar
  90. Cook, D., W. T. Beaulieu, I. W. Mott, F. Riet-Correa, D. R. Gardner, D. Grum, J. A. Pfister, K. Clay & C. Marcolongo-Pereira. 2013. Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order chaetothyriales in the host Ipomoea carnea. Journal of Agricultural and Food Chemistry 61: 3797–3803.PubMedGoogle Scholar
  91. Corpe, W. A. & S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiology Ecology 62: 243–250.Google Scholar
  92. Cottyn, B., E. Regalado, B. Lanoot, M. De Cleene, T. W. Mew & J. Swings. 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91: 282–292.PubMedGoogle Scholar
  93. Currie, C. R., J. A. Scott, R. C. Summerbell & D. Malloch. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701–704.Google Scholar
  94. Dalling, J. W., A. S. Davis, B. J. Schutte & A. E. Arnold. 2011. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. Journal of Ecology 99: 89–95.Google Scholar
  95. Dangl, J. L., D. M. Horvath & B. J. Staskawicz. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746–751.PubMedGoogle Scholar
  96. Danhorn, T. & C. Fuqua. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61: 401–422.PubMedGoogle Scholar
  97. Darrasse, A., A. Darsonval, T. Boureau, M.-N. Brisset, K. Durand & M.-A. Jacques. 2010. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Applied and Environmental Microbiology 76: 6787–6796.PubMedCentralPubMedGoogle Scholar
  98. Davies, P. J. 1995. Plant hormones and their role in plant growth and development. Pp 1–12. In: P. J. Davies (ed). Plant Hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  99. De Bary, A. 1866. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Holfmeister’s Handbook of Physiological Botany. Vol 2. Leipzig, Germany.Google Scholar
  100. De Costa, D. M., S. S. T. Samarasinghe, H. R. D. Dias & D. M. N. Dissanayake. 2008. Control of rice sheath blight by phyllosphere epiphytic microbial antagonists. Phytoparasitica 36: 52–65.Google Scholar
  101. Delmotte, N., C. Knief, S. Chaffron, G. Innerebner, B. Roschitzki, R. Schlapbach, C. von Mering & J. A. Vorholt. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences of the United States of America 106: 16428–16433.PubMedCentralPubMedGoogle Scholar
  102. Desoignies, N., F. Schramme, M. Ongena & A. Legreve. 2013. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the Rhizomania disease vector Polymyxa betae. Molecular Plant Pathology 14: 416–421.PubMedGoogle Scholar
  103. Dik, A. J. & J. A. Vanpelt. 1992. Interaction between phyllosphere yeasts, aphid honeydew and fungicide effectiveness in wheat under field conditions. Plant Pathology 41: 661–675.Google Scholar
  104. Dobson, A. P. 2004. Population dynamics of pathogens with multiple host species. The American Naturalist 164: 64–78.Google Scholar
  105. Dodds, P. N. & J. P. Rathjen. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11: 539–548.PubMedGoogle Scholar
  106. Dong, Y.–. H., J.-L. Xu, X.-Z. Li & L.-H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia caratovora. Proceedings of the National Academy of Sciences of the United States of America 97: 3526–3531.PubMedCentralPubMedGoogle Scholar
  107. Dunne, W. M. 2002. Bacterial adhesion: seen any good biofilms lately? Clinical Microbial Reviews 15: 155–166.Google Scholar
  108. Dyer, L. A., W. P. Carson & E. G. Leigh. 2012. Insect outbreaks in tropical forests: patterns, mechanisms, and consequences. Pp 219–245. In: P. Barbosa, D. K. Letourneau, & A. A. Agrawal (eds). Insect outbreaks revisited. Wiley-Blackwell, Hoboken, NJ, USA.Google Scholar
  109. ———, M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner, H. C. Morais, I. R. Diniz, T. A. Kursar & P. D. Coley. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448: 696–700.Google Scholar
  110. Elad, Y. 1996. Mechanisms involved in the biological control of Botrytis cinera incited diseases. European Journal of Plant Pathology 102: 719–732.Google Scholar
  111. Elasri, M., S. Delorme, P. Lemanceau, G. Stewart, B. Laue, E. Glickmann, P. M. Oger & Y. Dessaux. 2001. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil-borne Pseudomonas spp. Applied and Environmental Microbiology 67: 1198–1209.PubMedCentralPubMedGoogle Scholar
  112. Ellis, J. G., A. Kerr, A. Petit & T. Tempe. 1982. Conjugal transfer of nopaline and agropine Ti-plasmids – the role of agrocinopines. Molecular Genetics and Genomics 186: 269–274.Google Scholar
  113. Enya, J., H. Shinohara, S. Yoshida, T. Tsukiboshi, H. Negishi, K. Suyama & S. Tsushima. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecology 53: 524–536.PubMedGoogle Scholar
  114. Ercolani, C. L. 1991. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecology 21: 35–48.PubMedGoogle Scholar
  115. Evans, K. J., W. E. Nyquist & R. X. Latin. 1992. A model based on temperature and leaf wetness duration for establishment of Alternaria leaf blight of Muskmelon. Phytopathology 82: 890–895.Google Scholar
  116. Ewald, P. W. 1987. Transmission modes and evolution of the parasitism-mutualism continuum. Annals of the New York Academy of Sciences 503: 295–306.PubMedGoogle Scholar
  117. Falkowski, P. G., T. Fenchel & E. F. Delong. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320: 1034–1039.PubMedGoogle Scholar
  118. Fan, J., C. Crooks, G. Creissen, L. Hill, S. Fairhurts, P. Doerner & C. Lamb. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331: 1185–1188.PubMedGoogle Scholar
  119. Faulwetter, R. C. 1917. Dissemination of the angular leaf spot of cotton. Journal of Agricultural Research 8: 457–475.Google Scholar
  120. Fierer, N. & R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103: 626–631.PubMedCentralPubMedGoogle Scholar
  121. Fitt, B. D. L., H. A. Mccartney & P. J. Walklate. 1989. The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology 27: 241–270.Google Scholar
  122. Flemming, H.–. C. & J. Wingender. 2010. The biofilm matrix. Nature Reviews Microbiology 8: 623–633.PubMedGoogle Scholar
  123. Fokkema, N. J., J. G. den Houter, Y. J. C. Kosterman & A. L. Nelis. 1979. Manipulation of yeasts on field-grown wheat leaves and their antagonistic effect on Cochliobolus sativus and Septoria nodorum. Transactions of the British Mycological Society 72: 19–29.Google Scholar
  124. Friesen, M. L., S. S. Porter, S. C. Stark, E. J. Von Wettberg, J. L. Sachs & E. Martinez-Romero. 2011. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics 42: 23–46.Google Scholar
  125. Fürnkranz, M., W. Wanek, A. Richter, G. Abell, F. Rasche & A. Sessitsch. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest in Costa Rica. The ISME Journal 2: 561–570.PubMedGoogle Scholar
  126. Gallery, R. E., D. J. P. Moore & J. W. Dalling. 2010. Interspecific variation in susceptibility to fungal pathogens in seeds of 10 tree species in the neotropical genus Cecropia. Journal of Ecology 98: 147–155.Google Scholar
  127. Gans, J., M. Wolinsky & J. Dunbar. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387–1390.PubMedGoogle Scholar
  128. Garcia, K., J. P. Shaffer, C. Sarmiento, P. C. Zalamea, J. W. Dalling, A. Davis, D. A. Baltrus, R. E. Gallery & A. E. Arnold. 2013. Diversity and evolutionary relationships of bacteria affiliated with tropical seeds and seed-associated fungi (abstract). Pp. 572. The American Phytopathological Society and The Mycological Society of America Joint Meeting; August 10–14, 2013; Austin, Texas, USA.Google Scholar
  129. Ghazoul, J. & D. Sheil. 2010. The great unseen: fungi and microorganisms. Pp 33–43. In: J. Ghazoul & D. Sheil (eds). Tropical rain forest ecology, diversity, and conservation. Oxford University Press, Oxford, UK.Google Scholar
  130. Gilbert, G. S. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology 40: 13–43.PubMedGoogle Scholar
  131. ———. 2005. Dimensions of plant disease in tropical forests. Pp. 141–164. In: D. F. R. P. Burslem, M. A. Pinard & S. E. Hartley (eds). Biotic interactions in the tropics. Cambridge University Press, Cambridge, UK.Google Scholar
  132. Gillett, J. B. 1962. Pest pressure, an underestimated factor in evolution. Systematics Association Publication 4: 37–46.Google Scholar
  133. Gitaitis, R. & R. Walcott. 2007. The epidemiology and management of seedborne bacterial diseases. Annual Reviews of Phytopathology 45: 371–397.Google Scholar
  134. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopatholgy 43: 205–227.Google Scholar
  135. Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters 251: 1–7.PubMedGoogle Scholar
  136. Gnanamanickam, S. S. 2006. Plant-associated bacteria. Springer, Dordrecht, Netherlands.Google Scholar
  137. Goel, A. K., L. Rajagopal, N. Nagesh & R. V. Sonti. 2002. Genetic locus encoding functions involved in biosynthesis and outer membrane localization of xanthomonadin in Xanthomonas oryzae pv. oryzae. Journal of Bacteriology 184: 3539–3548.PubMedCentralPubMedGoogle Scholar
  138. Gonzales, W. L., M. A. Negritto, L. H. Suarez & E. Gianoli. 2008. Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologia 22: 128–132.Google Scholar
  139. Goodnow, R. A., M. D. Harrison, J. D. Morris, K. B. Sweeting & R. J. Laduca. 1990. Fate of ice nucleation-active Psuedomonas syringae in alpine soils and waters and in synthetic snow samples. Applied and Environmental Microbiology 56: 2223–2227.PubMedCentralPubMedGoogle Scholar
  140. Gordon, J. F. 1963. The nature and distribution within the plant of the bacteria associated with certain leaf-nodulated species of the families Myrisinaceae and Rubiaceae. Dissertaion, Imperial College, London, UK.Google Scholar
  141. Gottwald, T. R., J. H. Graham & T. S. Schubert. 2002. Citrus canker: the pathogen and its impact. Plant Health Progress. doi: 10.1094/PHP-2002-0812-01-RV.Google Scholar
  142. Graham, J. H., T. R. Gottwald, J. Cubero & D. S. Achor. 2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology 5: 1–15.PubMedGoogle Scholar
  143. Granér, G., P. Persson, J. Meijer & S. Alstrom. 2003. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters 224: 269–276.PubMedGoogle Scholar
  144. Groombridge, B. & M. D. Jenkins. 2002. World atlas of biodiversity: earth’s living resources in the 21st century. University of California Press, Berkeley, CA, USA.Google Scholar
  145. Gunasekera, T. S. & G. W. Sundin. 2006. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. Journal of Applied Microbiology 100: 1073–1083.PubMedGoogle Scholar
  146. Gutierrez-Manero, F. J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F. R. Tadeo & M. Talon. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active giberellins. Physiologia Plantarum 111: 206–211.Google Scholar
  147. Haeder, S., R. Wirth, H. Herz & D. Spiteller. 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic Escovopsis. Proceedings of the National Academy of Sciences of the United States of America 106: 4742–4746.PubMedCentralPubMedGoogle Scholar
  148. Haefele, D. M. & S. E. Lindow. 1987. Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Applied and Environmental Microbiology 53: 2528–2533.PubMedCentralPubMedGoogle Scholar
  149. Hagai, E., R. Dvora, T. Havkin-Blank, E. Zelinger, Z. Porat, S. Schulz & Y. Helman. 2014. Surface-motility induction, attraction, and hitchhiking between bacterial species promote dispersal on solid surfaces. The ISME Journal 8: 1147–1151.PubMedCentralPubMedGoogle Scholar
  150. Hallam, A. & J. Read. 2006. Do tropical species invest more in anti-herbivore defense than temperate species? A test in Ecryphia (Cunoniaceae) in eastern Australian. Journal of Tropical Ecology 22: 41–51.Google Scholar
  151. Hallmann, J., A. Quadt-Hallman, W. F. Mahafee & J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43: 895–914.Google Scholar
  152. Hardoim, P. R., L. S. Van Overbeek & J. D. Van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16: 463–471.PubMedGoogle Scholar
  153. Harrison, L., D. B. Teplow, M. Rinaldi & G. Strobel. 1991. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Journal of General Microbiology 137: 2857–2865.PubMedGoogle Scholar
  154. Hartmann, A., M. Rothballer, B. A. Hense & P. Schroder. 2014. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science 5: 131.PubMedCentralPubMedGoogle Scholar
  155. Henis, Y. & Y. Bashan. 1986. Epiphytic survival of bacterial leaf pathogens. Pp 252–268. In: N. J. Fokkema & J. van dev Heuvel (eds). Microbiology of the phyllosphere. Cambridge University Press, Cambridge, UK.Google Scholar
  156. Herre, A. E., L. C. Mejía, D. A. Kyllo, E. Rojas, Z. Maynard, A. Butler & S. A. Van Bael. 2007. Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88: 550–558.PubMedGoogle Scholar
  157. Hildebrand, M., E. Dickler & K. Geider. 2000. Occurrence of Erwinia amylovora on insects in a fire blight orchard. Journal of Phytopathology 148: 251–256.Google Scholar
  158. Hill, D. S. & J. M. Waller. 1982. Pests and diseases of tropical crops. Longman, London.Google Scholar
  159. Hirano, S. S. & C. D. Upper. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae- a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews 64: 624–653.PubMedCentralPubMedGoogle Scholar
  160. Hodgson, S., C. de Cates, J. Hodgson, N. J. Morley, B. C. Suttton & A. C. Gange. 2014. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution 4: 1199–1208.PubMedCentralPubMedGoogle Scholar
  161. Hoffman, M. T., M. K. Gunatilaka, K. Wijeratne, L. Gunatilaka & A. E. Arnold. 2013. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8: e73132.PubMedCentralPubMedGoogle Scholar
  162. Hogan, C. M. 2010. Bacteria. In: S. Draggan & C. J. Cleveland (eds). Encyclopedia of Earth. National Council for Science and the Environment, Washington, D.C., USA.Google Scholar
  163. Horner-Devine, M. C., M. A. Leibold, V. H. Smith & B. J. M. Bohannan. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters 6: 613–622.Google Scholar
  164. Horst, R. K. 1990. Westcott’s plant disease handbook, ed. 5th. Chapman & Hall, New York, NY, USA.Google Scholar
  165. Horton, M. W., N. Bodenhausen, K. Beilsmith, D. Meng, B. D. Muegge, S. Subramanian, M. M. Vetter, B. J. Vilhjalmsson, M. Nordborg, J. I. Gordon & J. Bergelson. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications. doi: 10.1038/ncomms6320.PubMedGoogle Scholar
  166. Howe, H. F. & J. Smallwood. 1982. The ecology of seed dispersal. Annual Review of Ecology, Evolution, and Systematics 13: 201–228.Google Scholar
  167. Hu, H. Q., X. S. Li & H. He. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54: 359–365.Google Scholar
  168. Huang, J. S. 1986. Ultrastructure of bacterial penetration in plants. Annual Review of Phytopathology 24: 141–157.Google Scholar
  169. Hyde, K. D. & K. Soytong. 2008. The fungal endophyte dilemma. Fungal Diversity 33: 163–173.Google Scholar
  170. Innerebner, G., C. Knief & J. A. Vorholt. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77: 3202–3210.PubMedCentralPubMedGoogle Scholar
  171. Irey, M., T. R. Gottwald, J. H. Graham, T. D. Riley & G. Carlton. 2006. Post-hurricane analysis of citrus canker spread and progress towards the development of a predictive model to estimate disease spread due to catastrophic weather events. Plant Health Progress. doi: 10.1094/PHP-2006-0822-01-RS.Google Scholar
  172. Ivey, C. T. & N. Desilva. 2001. A test of the function of drip tips. Biotropica 33: 188–191.Google Scholar
  173. Izore, T., V. Job & A. Dessen. 2011. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19: 603–612.PubMedGoogle Scholar
  174. Izumi, H. 2011. Diversity of endophytic bacteria in forest trees. Pp 95–105. In: A. M. Pirttila & A. C. Frank (eds). Endophytes of forest trees, Biology and applications series: Forestry sciences: forestry sciences, Vol. 80. Springer, Heidelberg, Germany.Google Scholar
  175. Jackson, R. W. 2009. Plant pathogenic bacteria: Genomics and molecular biology. Caister Academic Press, Norfolk, UK.Google Scholar
  176. Jackson, C. R. & W. C. Denney. 2011. Annual and seasonal variation in the phyllosphere bacteria community associated with leaves of the southern magnolia (Magnolia grandiflora). Microbial Ecology 61: 113–122.PubMedGoogle Scholar
  177. Jacobs, J. L., T. L. Carroll & G. W. Sundin. 2005. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microbial Ecology 49: 104–113.PubMedGoogle Scholar
  178. Jacobsen, B. J. 2006. Biological control of plant diseases by phyllosphere applied biological control agents. Pp 133–147. In: M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, & P. T. N. Spencer-Phillips (eds). Microbial ecology of aerial plant surfaces. Cabi International, Wallingford, UK.Google Scholar
  179. Janisiewicz, W. J. & L. Korsten. 2002. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology 40: 411–441.PubMedGoogle Scholar
  180. Jankiewicz, U. & M. Koltonowicz. 2012. The involvement of Pseudomonads bacteria in induced systemic resistance in plants. Applied Biochemistry and Microbiology 48: 276–281.Google Scholar
  181. Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104: 501–528.Google Scholar
  182. Ji, P. & M. Wilson. 2002. Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Applied and Environmental Micrbiology 68: 4383–4389.Google Scholar
  183. Johnston-Monje, D. & M. N. Raizada. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography, and ecology. PLoS ONE 6: e20396.PubMedCentralPubMedGoogle Scholar
  184. Jones, J. D. G. & J. L. Dangl. 2006. The plant immune system. Nature 444: 323–329.PubMedGoogle Scholar
  185. Jones, J. B., K. L. Pohronezny, R. E. Stall & J. P. Jones. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology 76: 430–434.Google Scholar
  186. Jones, S., B. Yu, N. J. Birdsall, B. W. Bycroft, S. R. Chhabra, A. J. Cox, P. Golby, P. J. Reeves & S. Stephens. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. The EMBO Journal 12: 2477–2482.PubMedCentralPubMedGoogle Scholar
  187. Joosten, L. & J. A. van Veen. 2011. Defensive properties of pyrrolizidine alkaloids against microorganisms. Phytochemistry Reviews 10: 127–136.PubMedCentralPubMedGoogle Scholar
  188. Kang, H. & D. C. Gross. 2005. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology 71: 5056–5065.PubMedCentralPubMedGoogle Scholar
  189. Karamanoli, K., G. Thalassinos, D. Karpouzas, A. M. Bosabaldis, D. Vokou & H.–. I. Constantinidou. 2012. Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth? Journal of Chemical Ecology 38: 476–485.PubMedGoogle Scholar
  190. Karamura, E., G. Kayobyo, G. Blomme, S. Benin, S. J. Eden-Green & R. Markham. 2006. Impacts of BXM epidemic on the livelihoods of rural communities in Uganda. Pp 57. In: G. Saddler, J. Elphinstone, & J. Smith (eds). Programme and Abstract Book of the 4th International Bacterial Wilt Symposium,17th-20th July 2006. The Lakeland Conference Centre, Central Science Laboratory, York, UK.Google Scholar
  191. Kayobyo, G., L. Aliguma, G. Omiat, J. Mugisha & S. Benin. 2005. Impact of BXM on household livelihoods in Uganda. “Assessing the impact of the banana bacterial wilt (Xanthomonas campestirs pv. musacearum) on household livelihoods in East Africa,” workshop. Kampala, Uganda.Google Scholar
  192. Keesing, F., R. D. Holt & R. S. Ostfeld. 2006. Effects of species diversity on disease risk. Ecology Letters 9: 485–498.PubMedGoogle Scholar
  193. Keith, L. M. W. & C. L. Bender. 1999. AlgT controls alginate production and tolerance to environmental stress in Pseudomonas syringae. Journal of Bacteriology 181: 7176–7184.PubMedCentralPubMedGoogle Scholar
  194. Kembel, S. W., T. K. O’Conner, H. K. Arnold, S. P. Hubbell, S. J. Wright & J. L. Green. 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America 111: 13715–13720.PubMedCentralPubMedGoogle Scholar
  195. Kim, J. J. & G. W. Sundin. 2000. Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nm) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology 182: 6137–6144.PubMedCentralPubMedGoogle Scholar
  196. ——— & ———. 2001. Construction and analysis of photolease mutants of Pseudomonas aeruginosa and Pseudomonas syringae: contribution of photoreactivation, nucleotide excision repair, and mutagenic DNA repair to cell Survival and mutability following exposure to UV-B radiation. Applied and Environmental Microbiology 67: 1405–1411.Google Scholar
  197. Kim, M., D. Singh, A. Lai-Hoe, R. Go, R. A. Rahim, A. N. Ainuddin, J. Chun & J. M. Adams. 2012. Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecology 63: 674–681.PubMedGoogle Scholar
  198. Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annual Review of Phytopathology 35: 327–347.PubMedGoogle Scholar
  199. Kishore, G. K., S. Pande & A. R. Podile. 2005. Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95: 1157–1165.PubMedGoogle Scholar
  200. ———, ———, & ———. 2005b. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. Journal of Phytopathology 153: 169–173.Google Scholar
  201. Kloepper, J. W. & C. M. Ryu. 2006. Bacterial endophytes as elicitors of induced systemic resistance. Pp 33–52. In: B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (eds). Microbial root endophytes. Springer, Berlin, Germany.Google Scholar
  202. Knief, C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassman, C. von Mering & J. A. Vorholt. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal 6: 1378–1390.PubMedCentralPubMedGoogle Scholar
  203. Knoll, D. & L. Schreiber. 1998. Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia and of model surfaces in relation to colonization by micro-organisms. New Phytologist 140: 271–282.Google Scholar
  204. ———, & ———. 2000. Plant-microbe interactions: wetting of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganisms. Microbial Ecology 41: 33–42.Google Scholar
  205. Kocks, C. G., M. A. Ruissen, J. C. Zadoks & M. G. Duijkers. 1998. Survival and extinction of Xanthomonas campestris pv. campestris in soil. European Journal of Plant Pathology 104: 911–923.Google Scholar
  206. Koutsoudis, M. D., D. Tsaltas, T. D. Minogue & S. B. von Bodman. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proceedings of the National Academy of Sciences of the United States of America 103: 5983–5988.PubMedCentralPubMedGoogle Scholar
  207. Kricher, J. C. 2011. Tropical ecology. Princeton University Press, Princeton, NJ, USA.Google Scholar
  208. Kurten, E. & W. P. Carson. 2015. Do ground-dwelling vertebrates promote diversity in a Neotropical forest? Results from a long-term exclosure experiment. BioScience.Google Scholar
  209. Lam, E., N. Kato & M. Lawton. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848–853.PubMedGoogle Scholar
  210. Lambais, M. R., D. E. Crowly, J. C. Cury, R. C. Bull & R. R. Rodrigues. 2006. Bacterial diversity in tree canopies of the Atlantic forest. Science 312: 1917.PubMedGoogle Scholar
  211. Lauber, C. L., M. Hamady, R. Knight & N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111–5120.PubMedCentralPubMedGoogle Scholar
  212. Laurence, W. F. & C. A. Peres (eds). 2006. Emerging threats to tropical forests. University of Chicago Press, Chicago, IL, USA.Google Scholar
  213. Leben, C. 1988. Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants. Phytopathology 78: 179–185.Google Scholar
  214. Legard, D. E. & J. E. Hunter. 1990. Pathogenicity on bean of Pseudomonas syringae pv. syringae recovered from the phylloplane of weeds and bean crop residue. Phytopathology 80: 938–942.Google Scholar
  215. Leigh, J. A. & D. L. Coplin. 1992. Exopolysaccharide in plant-bacterial interactions. Annual Review of Microbiology 46: 307–346.PubMedGoogle Scholar
  216. Levin, D. A. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 48: 3–15.Google Scholar
  217. ———. 1976. The chemical defenses of plants to pathogens and herbivores. Annual Review of Ecology, Evolution, and Systematics 7: 121–159.Google Scholar
  218. ———, & B. M. York, Jr. 1978. The toxicity of plant alkaloids: an ecogeographic perspective. Biochemical Systematics and Ecology 6: 61–76.Google Scholar
  219. Lewis, S. L., J. Lloyd, S. Sitch, E. T. A. Mitchard & W. F. Laurance. 2009. Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics 40: 529–549.Google Scholar
  220. Leyns, F., M. De Cleene, J.-G. Swings & J. De Ley. 1984. The host range of the genus Xanthomonas. The Botanical Review 50: 308–356.Google Scholar
  221. Li, J., G.–. Z. Zhao, H.–. H. Chen, H.–. B. Wang, S. Qin, W.–. Y. Zhu, L.–. H. Xu, C.–. L. Jiang & W.–. J. Li. 2008. Antitumor and antimicrobial activities of endophytic streptomcycetes from pharmaceutical plants in rainforest. Letters in Applied Microbiology 47: 574–580.PubMedGoogle Scholar
  222. Lindeberg, M., S. Cunnac & A. Collmer. 2012. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends in Microbiology 20: 199–208.PubMedGoogle Scholar
  223. Lindow, S. E. & M. T. Brandl. 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology 69: 1875–1883.PubMedCentralPubMedGoogle Scholar
  224. ———, G. Anderson & G. A. Beattie. 1993. Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic fitness. Applied and Environmental Microbiology 59: 1593–1601.Google Scholar
  225. Links, M. G., T. Demeke, T. Grafenhan, J. E. Hill, S. M. Hemmingsen & T. J. Dumonceauz. 2014. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytologist 202: 542–553.PubMedCentralPubMedGoogle Scholar
  226. Lodge, D. L., D. L. Hawksworth & B. J. Ritchie. 1996. Microbial diversity and tropical forest functioning. Pp 69–100. In: G. H. Orians, R. Dirzo, & J. H. Cushman (eds). Biodiversity and ecosystem processes in tropical forests. Springer, New York, NY, USA.Google Scholar
  227. Loh, J., E. A. Pierson, L. S. Pierson III, G. Stacey & A. Chatterjee. 2002. Quorum sensing in plant-associated bacteria. Current Opinion in Plant Biology 5: 285–290.Google Scholar
  228. Low, H. H., F. Gubellini, A. Rivera-Calzada, N. Braun, S. Connery, A. Dujeancourt, F. Lu, A. Redzej, R. Fronzes, E. V. Orlova & G. Waksman. 2014. Structure of a type IV secretion system. Nature 508: 550–553.PubMedCentralPubMedGoogle Scholar
  229. Lucking, R. 2001. Lichens on leaves in tropical rain forests: life in a permanently ephemerous environment. Dissertationes Botanicae 346: 41–78.Google Scholar
  230. Maggiorani Valencillos, A., P. Rodriguez Palenzuela & E. Lopez-Solanilla. 2006. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. Molecular Plant-Microbe Interactions 19: 607–613.Google Scholar
  231. Mah, T.–. F. & G. A. O’Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 9: 34–39.PubMedGoogle Scholar
  232. Malhado, A. C. M., Y. Malhi, R. J. Whittaker, R. J. Ladle, H. Ter Steege, N. N. Fabre, O. Phillips, W. F. Laurance, L. E. O. C. Aregao, N. C. A. Pitman, H. Ramirez-Angulo & C. H. M. Malhado. 2012. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 40: 1–10.Google Scholar
  233. Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez & J. D. Bever. 2010. Negative plant-soil feedback predicts tree relative species abundance in a tropical forest. Nature 466: 752–756.PubMedGoogle Scholar
  234. Mansfield, J., S. Genin, S. Magori, V. Citovsky, M. Sriariyanum, P. Ronald, M. Dow, V. Verdier, S. V. Beer, M. A. Machado, I. Toth, G. Salmond & G. D. Foster. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13: 614–629.PubMedGoogle Scholar
  235. Mann, E. E. & D. J. Wozniak. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiology Reviews 36: 893–916.PubMedCentralPubMedGoogle Scholar
  236. Marcell, L. M. & G. A. Beattie. 2002. Effect of leaf surface waxes on leaf colonizationby Pantoea agglomerans and Clavibacter michiganensis. Molecular Plant-Microbe Interactions 15: 1236–1244.PubMedGoogle Scholar
  237. Marin, D. H., R. A. Romero, M. Guzman & T. B. Sutton. 2003. Black Sigatoka: an increasing threat to banana cultivation. Plant Disease 3: 208–222.Google Scholar
  238. Maron, J. L., M. Marler, J. N. Klironomos & C. C. Cleveland. 2011. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters 14: 36–41.PubMedGoogle Scholar
  239. Mastretta, C., S. Taghavi, D. van der Lelie, A. Mengoni, F. Galardi, C. Gonnelli, T. Barac, J. Boulet, N. Weyens & J. Vangronsveld. 2009. Endophytic bacteria from seeds of Nicotina tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation 11: 251–267.Google Scholar
  240. Maude, R. B. 1996. Seedborne disease and their control: principles and practice. CAB International, Wallingford, UK.Google Scholar
  241. McCarter, S. M., J. B. Jones, R. D. Gitaitis & D. R. Smitley. 1983. Survival of Pseudomonas syringae pv. tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology 73: 1393–1398.Google Scholar
  242. McLean, R. C. 1919. Studies in the ecology of tropical rain-forest: with special reference to the forests of South Brazil. Journal of Ecology 7: 122–174.Google Scholar
  243. Mechaber, W. L. 2002. Mapping uncharted territory: nanoscale leaf surface topology. Pp 43–50. In: S. E. Lindow, E. I. Hect-Poinar, & V. J. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.Google Scholar
  244. ———, D. B. Marshall, R. A. Mechaber, R. T. Jobe & F. S. Chew. 1996. Mapping leaf surface landscapes. Proceedings of the National Academy of Sciences of the United States of America 93: 4600–4603.Google Scholar
  245. Mejía, L. C., E. I. Rojas, Z. Maynard, S. Van Bael, A. E. Arnold, P. Hebber, G. J. Samuels, N. Robbins & E. A. Herre. 2008. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control 46: 4–14.Google Scholar
  246. ———, E. A. Herre, J. P. Sparks, K. Winter, M. N. Garcia, S. A. Van Bael, J. Stitt, Z. Shi, Y. Zhang, M. J. Guiltinan & S. N. Maximova. 2014. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology 5: 479.Google Scholar
  247. Melnick, R. L., C. Suarez, B. A. Bailey & P. A. Backman. 2011. Isolation of endophytic endospore-forming bacteria from Theobrama cacao as potential biological control agents of cacao diseases. Biological Control 57: 236–245.Google Scholar
  248. ———, N. K. Zidack, B. A. Bailey, S. N. Maximova, M. Guiltinan & P. A. Bachman. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control 46: 46–56.Google Scholar
  249. Melotto, M., W. Underwood & S. Y. He. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology 46: 101–122.PubMedCentralPubMedGoogle Scholar
  250. ———, ———, J. Koczan, K. Nomura & S. Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980.Google Scholar
  251. Mendes, R., P. Garbeva & J. M. Raaijmakers. 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37: 634–663.PubMedGoogle Scholar
  252. Mercier, J. & S. E. Lindow. 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology 66: 369–374.PubMedCentralPubMedGoogle Scholar
  253. Meyer, K. M. & J. H. J. Leveau. 2012. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168: 621–629.PubMedCentralPubMedGoogle Scholar
  254. Miller, I. M. 1990. Bacterial leaf nodule symbiosis. Pp 163–234. In: J. A. Callow (ed). Advances in botanical research, Vol. 17. Academic, San Diego, CA, USA.Google Scholar
  255. Mills, K. E. & J. D. Bever. 1998. Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback. Ecology 79: 1595–1601.Google Scholar
  256. Monier, J.-M. & S. E. Lindow. 2003. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation of leaf surfaces. Proceedings of the National Academy of Sciences of the United States of America 100: 15977–15982.PubMedCentralPubMedGoogle Scholar
  257. ———, & ———. 2004. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Applied and Environmental Microbiology 70: 346–355.Google Scholar
  258. ———, & ———. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microbial Ecology 49: 343–352.Google Scholar
  259. Morais, M., L. Moreira, X. Feas & L. M. Estevinho. 2011. Honeybee-collected pollen from five Portuguese natural parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food and Chemical Toxicology 49: 1096–1101.PubMedGoogle Scholar
  260. Mordecai, E. A. 2011. Pathogen impacts on plant communities: Unifying theory, concepts, and empirical work. Ecological Monographs 81: 429–441.Google Scholar
  261. Morris, C. E. & L. L. Kinkel. 2002. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. Pp 365–375. In: S. E. Lindow, E. I. Hect-Poinar, & V. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.Google Scholar
  262. ———, & J. M. Monier. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology 41: 429–453.Google Scholar
  263. ———, C. L. Monteil & O. Berge. 2013. The life history of Pseudomonas syringae: linking agriculture to earth systems processes. Annual Review of Phytopathology 51: 85–104.Google Scholar
  264. ———, D. C. Sands, J. L. Vanneste, J. Montarry, B. Oakley, C. Guilbaud & C. Glaux. 2010. Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio 1: e00107-10.Google Scholar
  265. ———, ———, B. A. Vinatzer, C. Glaux, C. Guilbaud, A. Buffiere, S. Yan, H. Dominguez & B. M. Thompson. 2008. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The ISME Journal 2: 321–334.Google Scholar
  266. Müller, T. & S. Ruppel. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiology Ecology 87: 2–17.PubMedCentralPubMedGoogle Scholar
  267. Muller-Landau, H. C. & B. D. Hardesty. 2005. Seed dispersal of woody plants in tropical forests: Concepts, examples, and future directions. Pp 267–309. In: D. Burslem, M. Pinard, & S. Hartley (eds). Biotic interactions in the tropics. Cambridge University Press, Cambridge, UK.Google Scholar
  268. Murphy, P. G. & E. A. Lugo. 1986. Ecology of tropical dry forest. Annual Review of Ecology, Evolution, and Systematics 17: 89–96.Google Scholar
  269. Nadarasah, G. & J. Stavrinides. 2011. Insects as alternative hosts for phytopathogen bacteria. FEMS Microbiology Reviews 35: 555–575.PubMedGoogle Scholar
  270. Nathan, R. & H. C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15: 278–285.PubMedGoogle Scholar
  271. Neergaard, P. 1977. Seed pathology. Macmillan, London, UK.Google Scholar
  272. Neher, O. T., M. R. Johnston, N. K. Zidak & B. J. Jacobsen. 2009. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203–7 for the control of anthracnose of cucurbits caused by Glomerella cingulate var. orbiculare. Biological Control 48: 140–146.Google Scholar
  273. Neinhuis, C. & W. Barthlott. 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annuals of Botany 79: 667–677.Google Scholar
  274. Nelson, E. B. 2004. Microbial dynamics and interactions in the spermosphere. Annual Review of Phytopathology 42: 271–309.PubMedGoogle Scholar
  275. Newman, M. A., T. Sundelin, J. T. Nelson & G. Erbs. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 4: doi: 10.3389/fpls.2013.00139.Google Scholar
  276. Normander, B., B. B. Christensen, S. Molin & N. Kroer. 1998. Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Applied and Environmental Microbiology 64: 1902–1909.PubMedCentralPubMedGoogle Scholar
  277. Novotny, V. & Y. Basset. 2005. Host specificity of insect herbivores in tropical Forests. Proceedings of the Royal Society of London 272: 1083–1090.Google Scholar
  278. ———, ———, S. E. Miller, G. D. Weiblen, B. Bremer, L. Cizek & P. Drozd. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841–844.Google Scholar
  279. ———, D. Pavel, S. E. Miller, M. Kulfan, M. Janda, Y. Basset & G. D. Weiblen. 2006. Why are there so many species of herbivorous insects in tropical forests? Science 313: 1115–1118.Google Scholar
  280. Ochman, H., J. G. Lawrence & E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.PubMedGoogle Scholar
  281. Ophir, T. & D. L. Gutnick. 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology 60: 740–745.PubMedCentralPubMedGoogle Scholar
  282. O’ Toole, G., H. B. Kaplan & R. Kolter. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54: 49–79.Google Scholar
  283. Packer, A. & K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278–281.PubMedGoogle Scholar
  284. Paz, I. C. P., R. C. M. Santin, A. M. Guimaraes, O. P. P. Rosa, A. C. F. Dias, M. C. Quecine, J. L. Azevedo & A. T. S. Matsumura. 2012. Eucalyptus growth promotion by endophytic Bacillus spp. Genetics and Molecular Research 11: 3711–3720.PubMedGoogle Scholar
  285. Penuelas, J., L. Rico, R. Ogaya, A. S. Jump & J. Terradas. 2012. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biology 14: 565–575.PubMedGoogle Scholar
  286. Peterson, C. J., W. P. Carson, B. C. McCarthy & S. T. A. Pickett. 1990. Micrositevariation and soil dynamics within newly created treefall pits and mounds. Oikos 58: 39–46.Google Scholar
  287. Petrini, O. 1991. Fungal endophytes in tree leaves. Pp 179–197. In: J. H. Andrews & S. S. Hirano (eds). Microbial ecology of leaves. Springer, New York, NY, USA.Google Scholar
  288. Pfeifer, G. P. 1997. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photobiochemistry Photobiophysics 65: 270–283.Google Scholar
  289. Phatak, H. C. 1980. The role of seed and pollen in the spread of plant pathogens particularly viruses. Tropical Pest Management 26: 278–285.Google Scholar
  290. Pieterse, C. M. J., S. C. M. van Wees, J. A. van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek & L. C. van Loon. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell 10: 1571–1580.PubMedCentralPubMedGoogle Scholar
  291. Pineda, A., S.-J. Zheng, J. J. A. van Loon, C. M. J. Pieterse & M. Dicke. 2010. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends in Plant Science 15: 507–514.PubMedGoogle Scholar
  292. Piper, K. R., S. B. von Bodman & S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448–450.PubMedGoogle Scholar
  293. Pitzschke, A. & H. Hirt. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal 29: 1021–1032.PubMedCentralPubMedGoogle Scholar
  294. Poplawsky, A. R., S. C. Urban & W. Chun. 2000. Biological role of Xanthomonadin pigments in Xanthomonas campesitris pv. campestris. Applied and Environmental Microbiology 66: 5123–5127.PubMedCentralPubMedGoogle Scholar
  295. Power, A. G. & C. E. Mitchell. 2004. Pathogen spillover in disease epidemics. The American Naturalist 164: S79–S89.PubMedGoogle Scholar
  296. Pruvost, O., B. Boher, C. Brocherieux, M. Nicole & F. Chiroleu. 2002. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 92: 336–346.PubMedGoogle Scholar
  297. Putz, F. E. 1983. Treefall pits and mounds, buried seeds, and the importance of soil disturbance to pioneer trees on Barro Colorado Island, Panama. Ecology 64: 1069–1074.Google Scholar
  298. Qin, S., H.-H. Chen, G.-Z. Zhao, J. Li, W.-Y. Zhu, L.-H. Xu, J.-H. Jiang & W.-J. Li. 2012. Abundance and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environmental Microbiology Reports 4: 522–531.PubMedGoogle Scholar
  299. Quinones, B., G. Dulla & S. E. Lindow. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Molecular Plant-Microbe Interactions 18: 682–693.PubMedGoogle Scholar
  300. Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M.–. W. Tan, J. Tsongalis, C. L. Walendziewicz & R. G. Tompkins. 2000. Plants and animals share functionally common bacterial virulence factors. Proceedings of the National Academy of Sciences of the United States of America 97: 8815–8821.PubMedCentralPubMedGoogle Scholar
  301. Rakotoniriana, E. F., M. Rafamantanana, D. Randriamampionona, C. Rabemanantsoa, S. Urveg-Ratsimamanga, M. E. Jaziri, F. Munaut, A.–. M. Corbisier, J. Quentin-Leclercq & S. Declerck. 2013. Study in vitro of the impact of endophytic bacteria isolated from Centella asiactica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie van Leeuwenhoek 103: 121–133.PubMedGoogle Scholar
  302. Ramos-Solano, B. R., J. Barriuso & F. J. Gutierrez-Manero. 2008. Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). Pp 41–54. In: I. Ahmad, J. Pitchel, & S. Hayat (eds). Plant-bacteria interactions: Strategies and techniques to promote plant health. Wile, Weinheim, Germany.Google Scholar
  303. Rastogi, G., A. Sbodio, J. J. Tech, T. V. Suslow, G. L. Coaker & J. H. L. Leaveau. 2012. Leaf microbiota in an agroecosystems: Spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal 6: 1812–1822.PubMedCentralPubMedGoogle Scholar
  304. Redford, A. J., R. M. Bowers, R. Knight, Y. Linhart & N. Fierer. 2010. The ecology of the phyllosphere: Geographic and phylogenetic variability of bacteria on tree leaves. Environmental Microbiology 12: 2885–2893.PubMedCentralPubMedGoogle Scholar
  305. ——— & N. Fierer. 2009. Bacterial succession of the leaf surface: a novel system for studying successional dynamics. Microbial Ecology 58: 189–198.Google Scholar
  306. Reinhold-Hurek, B. & T. Hurek. 2011. Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology 14: 435–443.PubMedGoogle Scholar
  307. Reisberg, E. E., U. Hildebrandt, M. Riederer & U. Hentschel. 2012. Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie van Leeuwenhoek 3: 551–560.Google Scholar
  308. Remus-Emsermann, M. N. P., R. Tecon, G. A. Kowalchuk & J. H. J. Leveau. 2012. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. The ISME Journal 6: 756–765.PubMedCentralPubMedGoogle Scholar
  309. ———, S. Lücker, D. B. Müller, E. Potthoff, H. Daims & J. A. Vorholt. 2014. Spatial distribution analysis of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environmental Microbiology 16: 2329–2340.Google Scholar
  310. Reynolds, H. L., A. Packer, J. D. Bever & K. Clay. 2003. Grassroots ecology: Plant- microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84: 2281–2291.Google Scholar
  311. Richards, P. W. 1996. The tropical rain forest: An ecological study, ed. 2nd. Cambridge University Press, Cambridge, U.K.Google Scholar
  312. Ricklefs, R. E. 1977. Environmental heterogeneity and plant species diversity: A hypothesis. The American Naturalist 111: 376–381.Google Scholar
  313. Rigano, L. A., F. Siciliano, R. Enrique, L. Sendin, P. Filippone, P. S. Torres, J. Questa, J. M. Dow, A. P. Castagnaro, A. A. Vojnov & M. R. Marano. 2007. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions 20: 1222–1230.PubMedGoogle Scholar
  314. Rodriguez, R. J., J. F. White, A. E. Arnold & R. S. Redman. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182: 314–330.PubMedGoogle Scholar
  315. Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37: 317–350.Google Scholar
  316. Rosenblueth, M. & E. Martinez-Romero. 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19: 827–837.PubMedGoogle Scholar
  317. Roth-Nebelsick, A., D. Uhl, V. Mosbrugger & H. Kerp. 2001. Evolution and function of leaf venation architecture: A review. Annals of Botany 87: 533–566.Google Scholar
  318. Rousk, J., E. Baath, P. C. Brookes, C. L. Lauber, C. Lozupone, J. Gregory Caporaso, R. Knight & N. Fierer. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4: 1340–1351.PubMedGoogle Scholar
  319. Rudrappa, T., M. L. Biedrzycki & H. P. Bais. 2008. Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology 64: 153–166.PubMedGoogle Scholar
  320. Rundel, P. W. 1989. Ecological success in relation to plant form and function in the woody legumes. In: C. H. Stirton & J. L. Zarucchi (eds). Advances in legume biology, monographs in systematic botany from the Missouri Botanical Gardens 29: 377–398.Google Scholar
  321. Ryan, R. P., F.-J. Vorholter, N. Potnis, J. B. Jones, M.-A. Van Sluys, A. J. Bogdanove & J. M. Dow. 2011. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nature Reviews Microbiology 9: 344–355.PubMedGoogle Scholar
  322. Saleem, M., M. Arshad, S. Hussain & A. S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology 34: 635–648.Google Scholar
  323. Sanchez-Marquez, S., G. F. Bills, N. Herrero & I. Zabalgogeazcoa. 2012. Non-systemic fungal endophytes of grasses. Fungal Ecology 5: 289–297.Google Scholar
  324. Santer, A., L. I. A. Calderon-Villalobos & M. Estelle. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5: 301–307.Google Scholar
  325. Sarkar, S. & D. S. Guttman. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70: 1999–2012.PubMedCentralPubMedGoogle Scholar
  326. Schaad, N. W. 1982. Detection of seedborne bacterial plant pathogens. Plant Disease 88: 885–890.Google Scholar
  327. ———, & W. C. White. 1974. Survival of Xanthomonas campestris in soil. Phytopathology 64: 1518–1520.Google Scholar
  328. Schellenberg, B., C. Ramel & R. Dudler. 2010. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Molecular Plant-Microbe Interactions 23: 1287–1293.PubMedGoogle Scholar
  329. Schloss, P. D. & S. L. Westcott. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequenceanalysis. Applied and Environmental Microbiology 77: 3219–3226.PubMedCentralPubMedGoogle Scholar
  330. Schmelz, E. A., J. Engelberth, H. T. Alborn, P. O’Donnell, M. Sammons, H. Toshima & J. H. Tumlinson III. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America 100: 10552–10557.Google Scholar
  331. Schnitzer, S. A., J. N. Klironomos, J. Hillerislambers, L. L. Kinkel, P. B. Reich, K. Xiao, M. C. Rillig, B. A. Sikes, R. M. Callaway, S. A. Mangan, E. H. Van Nes & M. Scheffer. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92: 296–303.PubMedGoogle Scholar
  332. Schoenian, I., M. Spiteller, M. Ghaste, R. Wirth, H. Herz & D. Spiteller. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America 108: 1955–1960.PubMedCentralPubMedGoogle Scholar
  333. Schreiber, L. 1996. Wetting of the upper needle surfaceof Abies grandis: Influence of pH, wax chemistry and epiphytic microflora on contact angles. Plant, Cell & Environment 4: 459–166.Google Scholar
  334. ———, U. Krimm, D. Knoll, M. Sayed, G. Auling & R. M. Kroppenstedt. 2005. Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytologist 166: 589–594.Google Scholar
  335. Schrey, S. D. & M. T. Tarkka. 2008. Friends and foes: Streptomycetes as modulators of plant disease. Antonie Van Leeuwenhoek. 94: 11–19.PubMedGoogle Scholar
  336. Schulz, B. & C. Boyle. 2006. What are endophytes? Pp 1–13. In: B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (eds). Microbial root endophytes. Springer, Berlin, Germany.Google Scholar
  337. Schuster, M. L. & D. P. Coyne. 1974. Survival mechanisms of phytopathogenic bacteria. Annual Review of Phytopathology 12: 199–221.Google Scholar
  338. Shade, A. & J. Handelsman. 2012. Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology 14: 4–12.PubMedGoogle Scholar
  339. Sharma, R. R., D. Singh & R. Singh. 2009. Biological control of postharvest disease of fruits and vegetables by microbial antagonists: A review. Biological Reviews 50: 205–221.Google Scholar
  340. Shepherd, R. W., W. T. Bass, R. L. Houtz & G. J. Wagner. 2005. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. The Plant Cell 17: 1851–1861.PubMedCentralPubMedGoogle Scholar
  341. ———, & S. E. Lindow. 2009. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Applied and Environmental Microbiology 75: 45–53.Google Scholar
  342. Shiomi, H. F., H. S. A. Silva, I. S. Melo, F. V. Nunes & W. Bettiol. 2006. Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola 63: 32–39.Google Scholar
  343. Silby, M. W., C. Winstanley, S. A. C. Godfrey, S. B. Levy & R. W. Jackson. 2011. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiology Reviews 35: 652–680.PubMedGoogle Scholar
  344. Silo-Suh, L. A., B. J. Lethbridge, S. J. Raffel, H. He, J. Clardy & J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology 60: 2023–2030.PubMedCentralPubMedGoogle Scholar
  345. Silverstone, S. E., D. G. Gilchrist, R. M. Bostock & T. Kosuge. 1993. The 73-kb plAA plasmid increases competitive fitness of Pseudomonas syringae subspecies savastanoi in oleander. Canadian Journal of Microbiology 39: 659–664.PubMedGoogle Scholar
  346. Smirnova, A., H. Li, H. Weingart, S. Aufhammer, A. Burse, K. Finis, A. Schenk & A. S. Ullrich. 2001. Thermoregulated expression of virulence factors in plant-associated bacteria. Archives of Microbiology 176: 393–399.PubMedGoogle Scholar
  347. Sorensen, S. J., M. Bailey, L. H. Hansen, N. Kroer & S. Wuertz. 2005. Studying plasmid horizontal transfer in situ: A critical review. Nature 3: 700–710.Google Scholar
  348. Spaepen, S., J. Vanderleyden & R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31: 425–448.PubMedGoogle Scholar
  349. Stall, R. E., J. W. Miller, G. M. Marco & B. I. Canteros de Echenique. 1980. Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. Proceedings of the Florida State Horticultural Society 93: 10–14.Google Scholar
  350. Stavrinides, J., J. K. Mccloskey & H. Ochman. 2009. Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology 75: 2230–2235.PubMedCentralPubMedGoogle Scholar
  351. Stiefel, P., T. Zambelli & J. A. Vorholt. 2013. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Applied and Environmental Microbiology 79: 4895–4905.PubMedCentralPubMedGoogle Scholar
  352. Stoitsova, S. O., Y. Braun, M. S. Ullrich & H. Weingart. 2008. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Applied and Environmental Microbiology 74: 3387–3393.PubMedCentralPubMedGoogle Scholar
  353. Stone, J. K., Bacon, C. W. & J. F. White Jr. 2000. An overview of endophytic microbes: endophytism defined. Pp. 3–29. In: C. W. Bacon & J. F. White Jr. (eds). Microbial endophytes, Marcel Dekker, New York, NY, USA.Google Scholar
  354. Strobel, G. 2012. Genetic diversity of microbial endophytes and their biotechnical applications. Pp 249–262. In: K. E. Nelson & B. Jones-Nelson (eds). Genomics applications for the developing world. Springer, New York, NY, USA.Google Scholar
  355. ———, B. Daisy, U. Castillo & J. Harper. 2004. Natural products from endophyticmicroorganisms. Journal of Natural Products 67: 257–268.Google Scholar
  356. Sundin, G. W. & J. Murillo. 1999. Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environmental Microbiology 1: 75–87.PubMedGoogle Scholar
  357. Suryanarayanan, T. S., T. S. Murali & G. Venkatesan. 2002. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Canadian Journal of Botany 80: 818–826.Google Scholar
  358. Thaler, J. S., P. T. Humphrey & N. K. Whiteman. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17: 260–270.PubMedGoogle Scholar
  359. Thompson, I. P., M. J. Bailey, J. S. Fenlon, T. R. Fermor, A. K. Lilley, J. M. Lynch, P. J. McCormack, M. P. McQuilken, K. J. Purdy, P. B. Rainey & J. M. Whipps. 1993. Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil 150: 177–191.Google Scholar
  360. Thorne, E. T., B. M. Young, G. M. Young, J. F. Stevenson, J. M. Labavitch, M. A. Matthews & T. L. Rost. 2006. The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. American Journal of Botany 93: 497–504.PubMedGoogle Scholar
  361. Thurston, H. D. 1998. Tropical plant diseases, ed. 2nd. American Phytopathological Society, St. Paul, MN, USA.Google Scholar
  362. Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2–16.Google Scholar
  363. Tissier, A. 2012. Glandular trichomes: What comes after expressed sequence tags? The Plant Journal 70: 51–68.PubMedGoogle Scholar
  364. Tran, H., A. Ficke, T. Asiimwe, M. Hofte & J. M. Raaijmakers. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist 175: 731–742.PubMedGoogle Scholar
  365. Traw, M. B. 2002. Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56: 2196–2205.PubMedGoogle Scholar
  366. ———, & J. Bergelson. 2003. Interactive effects of jasmonic acid, sali-cylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology 133: 1367–1375.Google Scholar
  367. ———, & T. E. Dawson. 2003. Differential induction of trichomes by three herbivores of black mustard. Oecologia 131: 526–532.Google Scholar
  368. ———, J. Kim, S. Enright, D. F. Cipollini & J. Bergelson. 2004. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Molecular Ecology 12: 1125–1135.Google Scholar
  369. Tripathi, A. K., S. C. Verma, S. P. Chowdhury, M. Lebuhn, A. Gattinger & M. Schloter. 2006. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep water rice in India. International Journal of Systematic and Evolutionary Microbiology 56: 1677–1680.PubMedGoogle Scholar
  370. Tukey, H. B., Jr. 1970. The leaching of substances from plants. Annual Review of Plant Physiology 21: 305–324.Google Scholar
  371. U.S. Food and Drug Administration. 2013. List of completed consultants on bioengineered foods. Center for Food and Safety and Applied Nutrition. Office of Food Additive Safety. Accessed July 2014.
  372. van der Heijden, M. G. A., R. D. Bardgett & N. M. Straalen. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296–310.PubMedGoogle Scholar
  373. van der Putten, W. H., R. D. Bardgett, J. D. Bever, M. Bezemer, B. B. Casper, T. Fukami, P. Kardol, J. N. Klironomos, A. Kulmatiski, J. A. Schweitzer, K. N. Suding, T. F. J. Van de Voorde & D. A. Wardle. 2013. Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology 101: 265–276.Google Scholar
  374. van Elsas, J. D., S. Turner & M. J. Bailey. 2003. Horizontal gene transfer in the phytosphere. New Phytologist 157: 525–537.Google Scholar
  375. van Loon, L. C., P. A. H. M. Bakker & C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453–483.PubMedGoogle Scholar
  376. ———, & ———. 2006. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. Pp. 39–66. In: Z. A. Siddiqui (ed.). PGPR: biocontrol and biofertilization. Springer, Dordrecht, Netherlands.Google Scholar
  377. Van Oevelen, R. De Wachter, E. Robbrecht & E. Prinsen. 2003. Bulgarian Journal of Plant Physiology Special issue: 242–247.Google Scholar
  378. Van Wees, S., S. Van der Eht & C. M. J. Pieterse. 2008. Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology 11: 443–448.PubMedGoogle Scholar
  379. Vega, F. E., M. Pava-Ripoll, F. Posada & J. S. Buyer. 2005. Endophytic bacteria in Coffea arabica L. Journal of Basic Microbiology 45: 371–380.PubMedGoogle Scholar
  380. Verhagen, B. W. M., P. Trotel-Aziz, M. Couderschet, M. Hofte & A. Aziz. 2010. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. Journal of Experimental Botany 61: 249–260.PubMedGoogle Scholar
  381. Vidhyasekaran, P. 2004. Concise encyclopedia of plant pathology. Food Products Press, New York, NY, USA.Google Scholar
  382. Vokou, D., K. Vereli, E. Zarali, K. Karamanoli, H.-I. A. Constantinidou, N. Monokrousos, J. M. Halley & I. Sainis. 2012. Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microbial Ecology 64: 714–724.PubMedGoogle Scholar
  383. Von Bodman, S. B., W. D. Bauer & D. L. Coplin. 2003. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology 41: 455–482.Google Scholar
  384. Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10: 828–840.PubMedGoogle Scholar
  385. Wagner, G. J. 1991. Secreting glandular trichomes: More than just hairs. Plant Physiology 96: 675–679.PubMedCentralPubMedGoogle Scholar
  386. ———, E. Wang & R. W. Shepherd. 2004. New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany 93: 3–11.Google Scholar
  387. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedGoogle Scholar
  388. Waters, C. M. & B. L. Bassler. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 21: 319–346.PubMedGoogle Scholar
  389. Watnick, P. & R. Kolter. 2000. Biofilm, city of microbes. Journal of Bacteriology 182: 2675–2679.PubMedCentralPubMedGoogle Scholar
  390. Wellman, F. L. 1968. More diseases on crops in the tropics than in the temperate zone. Ceiba 14: 17–28.Google Scholar
  391. ———. 1972. Tropical American Plant Disease. The Scarecrow Press Inc., Metuchen, NJ, USA.Google Scholar
  392. Wenny, D. G. 2000. Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecological Monographs 70: 331–351.Google Scholar
  393. Whitehead, N. A., J. T. Byers, P. Commander, M. J. Corbett, S. J. Coulhurst, L. Everson, A. K. P. Harris, C. L. Pemberton, N. J. L. Simpson, H. Slater, D. S. Smith, M. Welch, N. Williamson & G. P. C. Salmond. 2002. The regulation of virulence in phytopathogenic Erwinia species: Quorum sensing, antibiotics, and ecological considerations. Antonie van Leeuwenhoek 81: 223–231.PubMedGoogle Scholar
  394. Whitman, W. B., D. C. Coleman & W. J. Wiebe. 1998. Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95: 6578–6583.PubMedCentralPubMedGoogle Scholar
  395. Williams, C. G. 2013. Forest tree pollen dispersal via the water cycle. American Journal of Botany 100: 1184–1190.PubMedGoogle Scholar
  396. Wilson, D. 1995. Endophyte – the evolution of the term, a clarification of its use and definition. Oikos 73: 274–276.Google Scholar
  397. Wilson, E. O. 1987. The little things that run the world (the importance and conservation of invertebrates). Conservation Biology 1: 344–346.Google Scholar
  398. Wilson, M. & S. E. Lindow. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Applied and Environmental Microbiology 60: 4468–4477.PubMedCentralPubMedGoogle Scholar
  399. Wooldridge, K. 2009. Bacterial secreted proteins: Secretory mechanisms and role in Pathogenesis. Caister Academic Press, Norfolk, UK.Google Scholar
  400. Yadav, R. K. P., K. Karamanoli & D. Vokou. 2005. Bacterial colonization of the phyllosphere of Mediterranean perennial species as influences by leaf structural and chemical features. Microbial Ecology 50: 185–196.PubMedGoogle Scholar
  401. ———, ——— & ———. 2011. Bacterial populations on the phyllosphere of Mediterranean plants: influence of leaf age and leaf surface. Frontiers of Agriculture in China 5: 60–63.Google Scholar
  402. Yao, C. B., G. Zehnder, E. Bausle & J. Kloepper. 1996. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. Journal of Economic Entomology 89: 510–514.Google Scholar
  403. Yu, X., S. P. Lund, R. A. Scott, J. W. Greenwald, A. H. Records, D. Nettleton, S. E. Lindow, D. C. Gross & G. A. Beattie. 2013. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proceedings of the National Academy of Sciences of the United States of America 110: E425–E434.PubMedCentralPubMedGoogle Scholar
  404. Zalamea, P.-C., C. Sarmiento, A. E. Arnold, A. S. Davis & J. W. Dalling. 2015. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Frontiers in Plant Science 5: doi: 10.3389/fpls.2014.00799.Google Scholar
  405. Zechner, E. L., S. Lang & J. F. Schildbach. 2012. Assembly and mechanisms of bacterial type IV secretion machines. Philosophical Transactions of the Royal Society B. 367: 1073–1987.Google Scholar
  406. Zhang, L., P. J. Murphy, A. Kerr & M. E. Tate. 1993. Agrobacterium conjugation and gene regulation. Nature 362: 446–448.PubMedGoogle Scholar
  407. Zhao, Y., J. P. Damicone & C. L. Bender. 2002. Detection, survival, and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma. Plant Disease 86: 883–888.Google Scholar
  408. ———, R. Thilmony, C. L. Bender, A. Schaller, S. Y. He & G. A. Howe. 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck Disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal 36: 485–499.Google Scholar
  409. Zheng, X., N. W. Spivey, W. Zeng, P.-P. Liu, Z. Q. Fu, D. F. Klessig, S. Y. He & X. Dong. 2012. Coronatine promotes Pseudomonas syringae virulence in plans by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe 11: 587-596.Google Scholar

Copyright information

© The New York Botanical Garden 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations