The Botanical Review

, Volume 81, Issue 1, pp 42–69 | Cite as

Effects of Warming and Drought on the Vegetation and Plant Diversity in the Amazon Basin

  • Ingrid Olivares
  • Jens-Christian Svenning
  • Peter M. van Bodegom
  • Henrik BalslevEmail author


Climate change is strong in the Amazon basin. Climate models consistently predict widespread warmer and drier conditions by the end of the 21st century. As a consequence, water stress will increase throughout the region. We here review current understanding of the impact of climate change on forests’ distribution patterns, species diversity and ecosystem functioning of lowland rainforests in the Amazon basin. We reviewed 192 studies that provide empirical evidence, historical information and theoretical models. Over millions of years rainforests expansions and contractions have been accompanied by changes in the diversity and productivity of forests. In the future, drought will produce forest contractions along the forest edges and the savanna ecotone, causing an extensive savannization, particularly in the east. In terms of diversity, warming will reduce plant species survival by decreasing their productivity, but extinctions may also occur as a result of vegetation disequilibrium, as many plants, dispersal and pollinator species will fail to track changing climate; mild drought kills understory trees and severe drought may eliminate canopy trees as well. Severe droughts will thus produce directional changes in species composition, although these shifts may vary among forests on different soil types. In terms of ecosystem functioning, droughts will reduce root growth and standing biomass and may shift the Amazonian forest from being CO2 sinks to become CO2 sources. Physiological and ecological responses to warming and the feedback between vegetation and climate are still not completely understood. In particular, experimental assays that allow direct conclusions on the response of Amazonian plants to the predicted climatic conditions are needed. Such studies could make possible more reliable estimates of future climatic and vegetation responses.


Geographical ecology Functional ecology Species distribution change Plant communities Tropical forests 


El cambio climático es intenso en la cuenca Amazónica. Los modelos climáticos predicen condiciones más secas y cálidas para finales del siglo 21. Como consecuencia, el estrés hídrico aumentará a través de la región. Aquí revisamos el conocimiento actual del impacto del cambio climático en los patrones de distribución, diversidad y funcionamiento de los bosques en la cuenca Amazónica. Examinamos 192 estudios basados en evidencia empírica, información histórica y modelos teóricos. Durante millones de años, las expansiones y contracciones de los bosques húmedos han estado acompañadas por cambios en su diversidad y productividad. En el futuro, la sequía provocará contracciones de los bosques húmedos a lo largo del límite con las sabanas, causando una extensa sabanización, particularmente en el oriente. En términos de diversidad, el calentamiento puede afectar la sobrevivencia de las especies vegetales al disminuir su productividad; sin embargo, podrían ocurrir extinciones como resultado de un desequilibrio en la vegetación, pues muchas especies vegetales, dispersores y polinizadores sucumbirán ante el cambio climático; sequías leves podrían eliminar los árboles del sotobosque y sequías severas podrían a su vez eliminar las especies del dosel. Intensas sequías producirán entonces cambios direccionales en la composición de las especies vegetales, pero estos cambios podrían variar de acuerdo al tipo de suelo. En términos del funcionamiento de los ecosistemas, las sequías reducirían el crecimiento de las raíces y la biomasa existente y transformarían los bosques Amazónicos en fuentes en lugar de sumideros de CO2. Aún no entendemos completamente las respuestas fisiológicas y ecológicas al calentamiento, así como la retroalimentación entre vegetación y clima. En particular, se requieren ensayos experimentales que permitan conclusiones directas sobre la respuesta de las plantas Amazónicas a las futuras condiciones climáticas. Tales estudios podrían dar lugar a estimativos más confiables de la futura distribución climática y de la vegetación en la cuenca Amazónica.

Palabras clave

Ecología del paisaje Ecología funcional Distribución de especies Comunidades vegetales Bosques tropicales 



We thank Flemming Nørgaard for drawing the figures and Naia Morueta-Holme, Rodrigo Cámara-Leret and Benjamin Blonder for their useful comments. We are also grateful to the reviewers for providing insight and posing critical questions. This work was funded by a training fellowship from the Department of Bioscience at Aarhus University and a student fellowship from Alberta Mennega Stichting. JCS was supported by the European Research Council (ERC-2012-StG-310886-HISTFUNC) and HB by a grant from the Danish Natural Science Research Council (10–083348).

Literature Cited

  1. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. Hogg, P. Gonzalez, R. Fensham, et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.Google Scholar
  2. Anderson, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13: 199–210.Google Scholar
  3. Anhuf, D., M.-P. Ledru & H. Behling. 2006. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeography, Palaeoclimatology, Palaeoecology 239: 510–527.Google Scholar
  4. Aragão, L. E. O., Y. Malhi, N. Barbier, A. Lima, Y. Shimabukuro, L. Anderson & S. Saatchi. 2008. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1779–1785.Google Scholar
  5. ———, ———, D. Metcalfe, J. Silva-Espejo, E. Jiménez, D. Navarrete, S. Almeida, A. Costa, N. Salinas & O. Phillips. 2009a. Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6: 2759–2778.Google Scholar
  6. Balch, J. K., D. C. Nepstad, L. M. Curran, P. M. Brando, O. Portela, P. Guilherme, J. D. Reuning-Scherer & O. de Carvalho. 2011. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261: 68–77.Google Scholar
  7. Balslev, H., J. Luteyn, B. Ilgaard & L. Im-Nielsen. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92: 37–57.Google Scholar
  8. Behling, H. & H. Hooghiemstra. 2000. Holocene Amazon rainforest-savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15: 687–695.Google Scholar
  9. ———, G. Keim, G. Irion, W. Junk & J. De Mello. 2001. Holocene environmental changes in the central Amazon Basin inferred from Lago Calado (Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 173: 87–101.Google Scholar
  10. Bermingham, E. & C. Dick. 2001. The Inga–Newcomer or Museum Antiquity? Science 293: 2214–2216.PubMedGoogle Scholar
  11. Betts, R., P. Cox, M. Collins, P. Harris, C. Huntingford & C. Jones. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157–175.Google Scholar
  12. Brando, P. M., D. C. Nepstad, E. A. Davidson, S. E. Trumbore, D. Ray & P. Camargo. 2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1839–1848.Google Scholar
  13. Bush, M. B. 2002. Distributional change and conservation on the Andean flank: a palaeoecological perspective. Global Ecology and Biogeography 11: 463–473.Google Scholar
  14. ——— & J. Flenley. 2007. Tropical rainforest responses to climatic change. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  15. ———, M. R. Silman & D. H. Urrego. 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303: 827–829.PubMedGoogle Scholar
  16. ———, M. Silman & C. Listopad. 2007. A regional study of Holocene climate change and human occupation in Peruvian Amazonia. Journal of Biogeography 34: 1342–1356.Google Scholar
  17. ———, Flenley, J. & W. D. Gosling. 2011. Tropical rainforest responses to climatic change, ed. 2nd. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  18. ———, M. Silman, C. McMichael & S. Saatchi. 2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1795–1802.Google Scholar
  19. Butt, N., Y. Malhi, O. Phillips & M. New. 2008. Floristic and functional affiliations of woody plants with climate in western Amazonia. Journal of Biogeography 35: 939–950.Google Scholar
  20. ———, ———, M. New, M. J. Macía, S. L. Lewis, G. Lopez-Gonzalez, W. F. Laurance, S. Laurance, R. Luizão & A. Andrade. 2012. Shifting dynamics of climate–functional groups in old-growth Amazonian forests. Plant Ecology & Diversity: 1–13.Google Scholar
  21. Campbell, D. G., D. C. Daly, G. T. Prance & U. N. Maciel. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38: 369–393.Google Scholar
  22. Cernusak, L. A., K. Winter, J. W. Dalling, J. A. Holtum, C. Jaramillo, C. Körner, A. D. Leakey, R. J. Norby, B. Poulter & B. L. Turner. 2013. Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology 40: 531–551.Google Scholar
  23. Clark, D. A. 2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 477–491.Google Scholar
  24. Clinebell, R. R., O. L. Phillips, A. H. Gentry, N. Stark & H. Zuuring. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation 4: 56–90.Google Scholar
  25. Cochrane, M. A. 2003. Fire science for rainforests. Nature 421: 913–919.PubMedGoogle Scholar
  26. ——— & M. D. Schulze. 1999. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31: 2–16.Google Scholar
  27. ——— & W. F. Laurance. 2002. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology 18: 311–325.Google Scholar
  28. ——— & C. P. Barber. 2009. Climate change, human land use and future fires in the Amazon. Global Change Biology 15: 601–612.Google Scholar
  29. Colwell, R. K., G. Brehm, C. L. Cardelús, A. C. Gilman & J. T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258–261.PubMedGoogle Scholar
  30. Condit, R. 1998. Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Climatic Change 39: 413–427.Google Scholar
  31. ———, S. P. Hubbell & R. B. Foster. 1996. Changes in tree species abundance in a neotropical forest: impact of climate change. Journal of Tropical Ecology 12: 231–256.Google Scholar
  32. Cook, K. H. & E. K. Vizy. 2008. Effects of twenty-first-century climate change on the Amazon rain forest. Journal of Climate 21: 542–560.Google Scholar
  33. Cook, B., N. Zeng & J. H. Yoon. 2012. Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections. Earth Interactions 16: 1–27.Google Scholar
  34. Coppola, E. & F. Giorgi. 2005. Climate change in tropical regions from high-resolution time-slice AGCM experiments. Quarterly Journal of the Royal Meteorological Society 131: 3123–3145.Google Scholar
  35. Costa, M. H. & J. A. Foley. 1997. Water balance of the Amazon Basin: Dependence on vegetation cover and canopy conductance. Journal of Geophysical Research: Atmospheres 102: 23973–23989.Google Scholar
  36. ——— & ———. 2000. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. Journal of Climate 13: 18–34.Google Scholar
  37. Cowling, S. A. & Y. Shin. 2006. Simulated ecosystem threshold responses to co‐varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Global Ecology and Biogeography 15: 553–566.Google Scholar
  38. Cox, P. M., R. Betts, M. Collins, P. Harris, C. Huntingford & C. Jones. 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology 78: 137–156.Google Scholar
  39. ———, P. P. Harris, C. Huntingford, R. A. Betts, M. Collins, C. D. Jones, T. E. Jupp, J. A. Marengo & C. A. Nobre. 2008. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453: 212–215.PubMedGoogle Scholar
  40. Chambers, J. Q. & W. L. Silver. 2004. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 463–476.Google Scholar
  41. Cheng, H., A. Sinha, F. W. Cruz, X. Wang, R. L. Edwards, F. M. d’Horta, C. C. Ribas, M. Vuille, L. D. Stott & A. S. Auler. 2013. Climate change patterns in Amazonia and biodiversity. Nature 4: 1411.Google Scholar
  42. Choat, B., S. Jansen, T. J. Brodribb, H. Cochard, S. Delzon, R. Bhaskar, S. J. Bucci, T. S. Feild, S. M. Gleason & U. G. Hacke. 2012. Global convergence in the vulnerability of forests to drought. Nature  491:752–755.Google Scholar
  43. da Costa, A. C. L., D. Galbraith, S. Almeida, B. T. T. Portela, M. da Costa, J. de Athaydes Silva Junior, A. P. Braga, P. H. de Gonçalves, A. A. de Oliveira & R. Fisher. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytologist 187: 579–591.PubMedGoogle Scholar
  44. da Silva Meneses, M. E. N., M. L. da Costa & H. Behling. 2013. Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern Brazilian Amazon. Journal of South American Earth Sciences 42: 17–26.Google Scholar
  45. Dai, A. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2: 45–65.Google Scholar
  46. Damasco, G., A. Vicentini, C. V. Castilho, T. P. Pimentel & H. E. Nascimento. 2013. Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white‐sand vegetation. Journal of Vegetation Science 24: 384–394.Google Scholar
  47. Davidson, E. A., A. C. de Araújo, P. Artaxo, J. K. Balch, I. F. Brown, M. M. Bustamante, M. T. Coe, R. S. DeFries, M. Keller, M. Longo, J. W. Munger & W. Schroeder. 2012. The Amazon basin in transition. Nature 481: 321–328.Google Scholar
  48. De Freitas, H. A., L. C. R. Pessenda, R. Aravena, S. E. M. Gouveia, A. S. Ribeiro & R. Boulet. 2001. Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter. Quaternary Research 55: 39–46.Google Scholar
  49. Dick, C. W., S. L. Lewis, M. Maslin & E. Bermingham. 2013. Neogene origins and implied warmth tolerance of Amazon tree species. Ecology and evolution 3: 162–169.PubMedCentralGoogle Scholar
  50. Doughty, C. E. 2011. An in situ leaf and branch warming experiment in the Amazon. Biotropica 43: 658–665.Google Scholar
  51. ——— & M. L. Goulden. 2008. Are tropical forests near a high temperature threshold? Journal of Geophysical Research 113: 1–12.Google Scholar
  52. Eltahir, E. A. 1996. Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. Journal of Geophysical Research 101: 4255–4268.Google Scholar
  53. Engelbrecht, B. M., L. S. Comita, R. Condit, T. A. Kursar, M. T. Tyree, B. L. Turner & S. P. Hubbell. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80–82.PubMedGoogle Scholar
  54. Enquist, B. J. & C. A. Enquist. 2011. Long-term change within a Neotropical forest: assessing differential functional and floristic responses to disturbance and drought. Global Change Biology 17: 1408–1424.Google Scholar
  55. Eva, H. D. & O. Huber (eds). 2005. A proposal for defining the geographical boundaries of Amazonia, Rep. EUR 21808-E. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  56. Fearnside, P. M. 2009. Global warming in Amazonia: impacts and mitigation. Acta Amazonica 39: 1003–1011.Google Scholar
  57. Feeley, K. J. 2012. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Global Change Biology 18: 1335–1341.Google Scholar
  58. ——— & M. R. Silman. 2009. Extinction risks of Amazonian plant species. Proceedings of the National Academy of Sciences 106: 12382–12387.Google Scholar
  59. ——— & ———. 2010a. Biotic attrition from tropical forests correcting for truncated temperature niches. Global Change Biology 16: 1830–1836.Google Scholar
  60. ——— & ———. 2010b. Modelling the responses of Andean and Amazonian plant species to climate change: the effects of georeferencing errors and the importance of data filtering. Journal of Biogeography 37: 733–740.Google Scholar
  61. ——— & E. M. Rehm. 2012. Amazon’s vulnerability to climate change heightened by deforestation and man-made dispersal barriers. Global Change Biology 18: 3606–3614.Google Scholar
  62. ———, ——— & B. Machovina. 2012a. The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography 4: 69–84.Google Scholar
  63. ———, Y. Malhi, P. Zelazowski & M. R. Silman. 2012b. The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Global Change Biology 18: 2636–2647.Google Scholar
  64. Fernandes, A. M., M. Wink, C. H. Sardelli & A. Aleixo. 2014. Multiple speciation across the Andes and throughout Amazonia: the case of the spot-backed antbird species complex (Hylophylax naevius/Hylophylax naevioides). Journal of Biogeography 41: 1094–1104.Google Scholar
  65. Fisher, R. A., M. Williams, M. de Lourdes Ruivo, A. L. de Costa & P. Meir. 2008. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agricultural and Forest Meteorology 148: 850–861.Google Scholar
  66. ———, ———, A. L. da Costa, Y. Malhi, R. F. da Costa, S. Almeida & P. Meir. 2007. The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Global Change Biology 13: 2361–2378.Google Scholar
  67. ———, N. McDowell, D. Purves, P. Moorcroft, S. Sitch, P. Cox, C. Huntingford, P. Meir & F. Ian Woodward. 2010. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytologist 187: 666–681.PubMedGoogle Scholar
  68. François, L. M., Y. Goddéris, P. Warnant, G. Ramstein, N. de Noblet & S. Lorenz. 1999. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chemical geology 159: 163–189.Google Scholar
  69. Galbraith, D., P. E. Levy, S. Sitch, C. Huntingford, P. Cox, M. Williams & P. Meir. 2010. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist 187: 647–665.PubMedGoogle Scholar
  70. Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1–34.Google Scholar
  71. Ghannoum, O. & D. A. Way. 2011. On the role of ecological adaptation and geographic distribution in the response of trees to climate change. Tree Physiology 31: 1273–1276.PubMedGoogle Scholar
  72. Goulden, M. L., S. D. Miller, H. R. Da Rocha, M. C. Menton, H. C. de Freitas, A. M. E. Silva Figueira & C. A. D. de Sousa. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications 14: 42–54.Google Scholar
  73. Grace, J., J. Lloyd, J. Mcintyre, A. Miranda, P. Meir, H. Miranda, J. Moncrieff, J. Massheder, I. Wright & J. Gash. 1995. Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Global Change Biology 1: 1–12.Google Scholar
  74. Graham, A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany 98: 336–351.PubMedGoogle Scholar
  75. Hacke, U., J. Sperry, B. Ewers, D. Ellsworth, K. Schäfer & R. Oren. 2000. Influence of soil porosity on water use in Pinus taeda. Oecologia 124: 495–505.Google Scholar
  76. ———, ———, W. T. Pockman, S. D. Davis & K. A. McCulloh. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461.Google Scholar
  77. Hansen, M., P. Potapov, R. Moore, M. Hancher, S. Turubanova, A. Tyukavina, D. Thau, S. Stehman, S. Goetz & T. Loveland. 2013. High-Resolution Global Maps of 21st Century Forest Cover Change. Science 342: 850–853.PubMedGoogle Scholar
  78. Harris, P. P., C. Huntingford & P. M. Cox. 2008. Amazon basin climate under global warming: the role of the sea surface temperature. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1753–1759.Google Scholar
  79. Hartmann, H. 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon?–How trees may cope with more frequent climate change-type drought events. Global Change Biology 17: 642–655.Google Scholar
  80. Higgins, P. A. 2007. Biodiversity loss under existing land use and climate change: an illustration using northern South America. Global Ecology and Biogeography 16: 197–204.Google Scholar
  81. Higgins, M. A., K. Ruokolainen, H. Tuomisto, N. Llerena, G. Cardenas, O. L. Phillips, R. Vásquez & M. Räsänen. 2011. Geological control of floristic composition in Amazonian forests. Journal of Biogeography 38: 2136–2149.PubMedCentralPubMedGoogle Scholar
  82. Hirota, M., C. Nobre, M. D. Oyama & M. Bustamante. 2010. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America. New Phytologist 187: 707–719.PubMedGoogle Scholar
  83. Honorio, C. E. N., T. R. Pennington & L. A. Freitas. 2008. Análisis de la composición florística de los bosques de Jenaro Herrera, Loreto, Perú. Revista Peruana de Biología 15: 53–60.Google Scholar
  84. ———, K. G. Dexter, M. F. Poelchau, P. M. Hollingsworth, O. L. Phillips & T. R. Pennington. 2014. Ficus insipida subsp. insipida (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. Journal of Biogeography. doi: 10.1111/jbi.12326.Google Scholar
  85. Hoorn, C., F. P. Wesselingh, H. ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez–Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, et al. 2010. Amazonia through time: Andean uplift, cimate change, landscape evolution, and biodiversity. Science 330: 927–931.PubMedGoogle Scholar
  86. Hubbell, S. P., F. He, R. Condit, L. Borda-de-Agua, J. Kellner & H. ter Steege. 2008. How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences 105: 11498–11504.Google Scholar
  87. Huntingford, C., P. Zelazowski, D. Galbraith, L. M. Mercado, S. Sitch, R. Fisher, M. Lomas, A. P. Walker, C. D. Jones & B. B. Booth. 2013. Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience 6: 268–273.Google Scholar
  88. Hutyra, L., J. Munger, C. Nobre, S. Saleska, S. Vieira & S. Wofsy. 2005. Climatic variability and vegetation vulnerability in Amazonia. Geophysical Research Letters 32, L24712.Google Scholar
  89. IPCC. 2001. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). University Press, Cambridge, UK, Cambridge. Climatic Change 2001: The Scientific Basis.Google Scholar
  90. ——— 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). University Press, Cambridge, UK, Cambridge. Climate Change 2007: The Physical Science Basis.Google Scholar
  91. Jaramillo, C., M. J. Rueda & G. Mora. 2006. Cenozoic plant diversity in the Neotropics. Science 311: 1893–1896.PubMedGoogle Scholar
  92. ———, D. Ochoa, L. Contreras, M. Pagani, H. Carvajal-Ortiz, L. M. Pratt, S. Krishnan, A. Cardona, M. Romero, L. Quiroz, G. Rodriguez, M. J. Rueda, et al. 2010. Effects of rapid global warming at the Paleocene-Eocene boundary on Neotropical vegetation. Science 330: 957–961.PubMedGoogle Scholar
  93. Jipp, P. H., D. C. Nepstad, D. Cassel & C. R. De Carvalho. 1998. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change 39: 395–412.Google Scholar
  94. Johns, T., J. Gregory, W. Ingram, C. Johnson, A. Jones, J. Lowe, J. Mitchell, D. Roberts, D. Sexton & D. Stevenson. 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics 20: 583–612.Google Scholar
  95. Jones, P., M. New, D. Parker, S. Martin & I. Rigor. 1999. Surface air temperature and its changes over the past 150 years. Reviews of Geophysics 37: 173–199.Google Scholar
  96. Junk, W. J. & M. T. F. Piedade. 2011. An introduction to South American wetland forests: distribution, definitions and general characterization. Pp 3–25. In: W. J. Junk, M. T. F. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (eds). Amazonian floodplain forests. Ecophysiology, biodiversity and sustainable management. Springer, New York.Google Scholar
  97. Kalliola, R., M. Puhakka, J. Salo, H. Tuomisto & K. Ruokolainen. 1991. The dynamics, distribution and classification of swamp vegetation in Peruvian Amazonia. Annales Botanici Fennici 28: 225–239.Google Scholar
  98. Keller, M. & M. Lerdau. 1999. Isoprene emission from tropical forest canopy leaves. Global Biogeochemical Cycles 13: 19–29.Google Scholar
  99. Koch, G. W., J. S. Amthor & M. L. Goulden. 1994. Diurnal patterns of leaf photosynthesis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon: measurements from the Radeau des Cimes. Tree Physiology 14: 347–360.PubMedGoogle Scholar
  100. Korning, J. & H. Balslev. 1994. Growth rates and mortality patterns of tropical lowland tree species and the relation to forest structure in Amazonian Ecuador. Journal of Tropical Ecology 10: 151–166.Google Scholar
  101. Krause, G. H., K. Winter, B. Krause, P. Jahns, M. García, J. Aranda & A. Virgo. 2010. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Functional Plant Biology 37: 890–900.Google Scholar
  102. Laurance, W. F., G. B. Williamson, P. Delamónica, A. Oliveira, T. E. Lovejoy, C. Gascon & L. Pohl. 2001. Effects of a strong drought on Amazonian forest fragments and edges. Journal of Tropical Ecology 17: 771–785.Google Scholar
  103. ———, A. A. Oliveira, S. G. Laurance, R. Condit, H. E. Nascimento, A. C. Sanchez-Thorin, T. E. Lovejoy, A. Andrade, S. D’Angelo & J. E. Ribeiro. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428: 171–175.PubMedGoogle Scholar
  104. Le Quéré, C., R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, et al. 2013. The global carbon budget 1959–2011. Earth System Science Data Discussions 5: 1107–1157.Google Scholar
  105. Ledru, M. P., M. L. Salgado-Labouriau & M. L. Lorscheitter. 1998. Vegetation dynamics in southern and central Brazil during the last 10,000 yr BP. Review of Palaeobotany and Palynology 99: 131–142.Google Scholar
  106. Lewis, S. L., O. L. Phillips, T. R. Baker, J. Lloyd, Y. Malhi, S. Almeida, N. Higuchi, W. F. Laurance, D. A. Neill, J. N. M. Silva, J. Terborgh, A. Torres Lezama, et al. 2004. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 421–436.Google Scholar
  107. ———, P. M. Brando, O. L. Phillips, G. M. van der Heijden, D. Nepstad, et al. 2011. The 2010 Amazon Drought. Science 331: 554–554.PubMedGoogle Scholar
  108. Li, W., R. Fu & R. E. Dickinson. 2006. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. Journal of Geophysical Research 111: 1–14.Google Scholar
  109. Lloyd, J. & G. D. Farquhar. 2008. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1811–1817.Google Scholar
  110. Lovelock, C. E., A. Virgo, M. Popp & K. Winter. 1999. Effects of elevated CO2 concentrations on photosynthesis, growth and reproduction of branches of the tropical canopy tree species, Luehea seemannii Tr. & Planch. Plant, Cell & Environment 22: 49–59.Google Scholar
  111. Malhi, Y. & J. Wright. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 311–329.Google Scholar
  112. ———, J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li & C. A. Nobre. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319: 169–172.PubMedGoogle Scholar
  113. ———, L. E. Aragão, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski, S. Sitch, C. McSweeney & P. Meir. 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences 106: 20610–20615.Google Scholar
  114. ———, T. R. Baker, O. L. Phillips, S. Almeida, E. Alvarez, L. Arroyo, J. Chave, C. I. Czimczik, A. Di Fiore & N. Higuchi. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10: 563–591.Google Scholar
  115. ———, D. Wood, T. R. Baker, J. Wright, O. L. Phillips, T. Cochrane, P. Meir, J. Chave, S. Almeida & L. Arroyo. 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology 12: 1107–1138.Google Scholar
  116. Marengo, J. A. 2004. Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology 78: 79–96.Google Scholar
  117. ——— 2007. Climate change and hydrological modes of the wet tropics. Pp 236–268. In: M. Bush & J. Flenley (eds). Tropical rainforest responses to climatic change. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  118. ———, Nobre, C. A., G. Sampaio, L. Salazar & L. Borma. 2011. Climate change in the Amazon Basin: tipping points, changes in extremes, and impacts on natural and human systems. Pp 259–283. In: M. Bush, J. Flenley, & W. D. Gosling (eds). Tropical rainforest responses to climatic change, ed. 2nd. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  119. ———, ———, J. Tomasella, M. D. Oyama, G. de Sampaio Oliveira, R. de Oliveira, H. Camargo, L. M. Alves & I. F. Brown. 2008. The drought of Amazonia in 2005. Journal of Climate 21: 495–516.Google Scholar
  120. Maslin, M. A. & S. J. Burns. 2000. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290: 2285–2287.PubMedGoogle Scholar
  121. Mayle, F. E. & M. J. Power. 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1829–1838.Google Scholar
  122. ———, R. Burbridge & T. J. Killeen. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290: 2291–2294.PubMedGoogle Scholar
  123. McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West & D. G. Williams. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178: 719–739.PubMedGoogle Scholar
  124. McElrone, A. J., J. Bichler, W. T. Pockman, R. N. Addington, C. R. Linder & R. B. Jackson. 2007. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant, Cell & Environment 30: 1411–1421.Google Scholar
  125. Meir, P., D. B. Metcalfe, A. C. L. Costa & R. A. Fisher. 2008. The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1849–1855.Google Scholar
  126. Metcalfe, D. B., P. Meir, L. E. O. Aragão, A. C. da Costa, A. P. Braga, P. H. Gonçalves, J. D. A. S. Junior, S. S. de Almeida, L. A. Dawson & Y. Malhi. 2008. The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil 311: 189–199.Google Scholar
  127. ———, ———, ———, R. Lobo-do-Vale, D. Galbraith, R. Fisher, M. M. Chaves, J. Maroco, A. da Costa & S. de Almeida. 2010. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist 187: 608–621.PubMedGoogle Scholar
  128. Moreira, L., P. Moreira-Turcq, R. Cordeiro, B. Turcq, S. Caquineau, J. Viana & N. Brandini. 2013. Holocene paleoenvironmental reconstruction in the eastern Amazonian basin: Comprido Lake. Journal of South American Earth Sciences 44: 55–62.Google Scholar
  129. Myster, R. W. 2009. Plant communities of western Amazonia. The Botanical Review 75(3): 271–291.Google Scholar
  130. Nepstad, D. C., C. M. Stickler, B. Soares-Filho & F. Merry. 2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 1737–1746.Google Scholar
  131. ———, I. M. Tohver, D. Ray, P. Moutinho & G. Cardinot. 2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88: 2259–2269.PubMedGoogle Scholar
  132. ———, C. R. de Carvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore & S. Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372: 666–669.Google Scholar
  133. ———, P. Moutinho, M. B. Dias, E. Davidson, G. Cardinot, D. Markewitz, R. Figueiredo, N. Vianna, J. Chambers & D. Ray. 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. Journal of Geophysical Research 107: 1–18.Google Scholar
  134. NOAA. 2013. U.S. Department of Commerce, National Oceanic and Atmospheric Administration. Earth System Research Laboratory – Global Monitoring Division. Research news.
  135. Oliveira, R. S., T. E. Dawson, S. S. Burgess & D. C. Nepstad. 2005. Hydraulic redistribution in three Amazonian trees. Oecologia 145: 354–363.PubMedGoogle Scholar
  136. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.Google Scholar
  137. Parolin, P. 2001. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128: 326–335.PubMedGoogle Scholar
  138. ——— 2010. Flood-tolerant trees of Amazonian floodplains also tolerate drought. Pesquisas Botânica 61: 7–38.Google Scholar
  139. ———, C. Lucas, M. T. F. Piedade & F. Wittmann. 2010. Drought responses of flood-tolerant trees in Amazonian floodplains. Annals of botany 105: 129–139.PubMedCentralPubMedGoogle Scholar
  140. Phillips, O. L., S. Lewis, T. Baker & Y. Malhi. 2007. The response of South American tropical forests to contemporary atmospheric change. Pp 317–332. In: M. Bush & J. Flenley (eds). Tropical rainforest responses to climatic change. Springer Springer-Verlag, Berlin, Heidelberg.Google Scholar
  141. ———, N. Higuchi, S. Vieira, T. R. Baker, K. J. Chao & S. L. Lewis. 2009b. Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. Pp 373–387. In: M. Keller, M. Bustamante, J. Gash, & P. S. Dias (eds). Amazonia and global change. American Geophysical Union, Washington, D. C., USA.Google Scholar
  142. ———, R. V. Martínez, L. Arroyo, T. R. Baker, T. Killeen, S. L. Lewis, Y. Malhi, A. M. Mendoza, D. Neill & P. N. Vargas. 2002. Increasing dominance of large lianas in Amazonian forests. Nature 418: 770–774.PubMedGoogle Scholar
  143. ———, Aragão, L. E., S. L. Lewis, J. B. Fisher, J. Lloyd, G. López-González, Y. Malhi, A. Monteagudo, J. Peacock & C. A. Quesada. 2009a. Drought sensitivity of the Amazon rainforest. Science 323: 1344–1347.PubMedGoogle Scholar
  144. ———, G. van der Heijden, S. L. Lewis, G. López-González, L. E. Aragão, J. Lloyd, Y. Malhi, A. Monteagudo, S. Almeida & E. A. Dávila. 2010. Drought–mortality relationships for tropical forests. New Phytologist 187: 631–646.PubMedGoogle Scholar
  145. Pires, J. M. & G. T. Prance. 1985. The vegetation types of the Brazilian Amazon. Pp 109–145. In: G. T. Prance & T. E. Lovejoy (eds). Key environments – Amazonia. Pergamon press, Oxford, England.Google Scholar
  146. Poulter, B., F. Hattermann, E. Hawkins, S. Zaehle, S. Sitch, N. Restrepo-Coupe, U. Heyder & W. Cramer. 2010. Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Global Change Biology 16: 2476–2495.Google Scholar
  147. Prance, G. T. 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31: 26–38.Google Scholar
  148. Putz, F. E., H. A. Mooney & S. H. Bullock. 1989. Biology of vines. Trends in Ecology & Evolution 4: 224–224.Google Scholar
  149. Restom, T. G. & D. C. Nepstad. 2001. Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant and Soil 236: 155–163.Google Scholar
  150. Richards, P. W. 1996. Pp 352–359. The Tropical Rain Forest: An Ecological Study, ed. 2nd. Cambridge University Press, Cambridge, UK.Google Scholar
  151. Rojas, M., A. Seth & S. A. Rauscher. 2006. Relationship between precipitation and moisture flux changes in the SRES A2 scenario for the South American monsoon region. CLARIS News 3: 14–20.Google Scholar
  152. Ropelewski, C. F. & M. S. Halpert. 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review 115: 1606–1626.Google Scholar
  153. Saatchi, S., R. Houghton, R. Dos Santos Alvala, J. Soares & Y. Yu. 2007. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13: 816–837.Google Scholar
  154. Salazar, L. F., C. A. Nobre & M. D. Oyama. 2007. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters 34: 1–6.Google Scholar
  155. Saleska, S. R., S. D. Miller, D. M. Matross, M. L. Goulden, S. C. Wofsy, H. R. da Rocha, P. B. de Camargo, P. Crill, B. C. Daube & H. C. de Freitas. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302: 1554–1557.PubMedGoogle Scholar
  156. Sandel, B., L. Arge, B. Dalsgaard, R. Davies, K. Gaston, W. Sutherland & J.-C. Svenning. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334: 660–664.PubMedGoogle Scholar
  157. Scholze, M., W. Knorr, N. W. Arnell & I. C. Prentice. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences 103: 13116–13120.Google Scholar
  158. Sevanto, S., N. G. McDowell, L. T. Dickman, R. Pangle & W. T. Pockman. 2013. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment.. doi: 10.1111/pce.12141.Google Scholar
  159. Silman, M. 2007. Plant species diversity in Amazonian forests. Pp 269–294. In: M. Bush & J. Flenley (eds). Tropical rainforest responses to climatic change. Springer Springer-Verlag, Berlin, Heidelberg.Google Scholar
  160. Silva Dias, P. L., B. Turcq, M. A. F. Silva Dias, P. Braconnot & T. Jorgetti. 2009. Mid–Holocene climate of tropical South America: a model-data approach. Pp 259–281. In: F. Vimeux, F. Sylvestre, & M. Khodri (eds). Past climate variability in South America and surrounding regions. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  161. Soares-Filho, B. S., D. C. Nepstad, L. M. Curran, G. C. Cerqueira, R. A. Garcia, C. A. Ramos, E. Voll, A. McDonald, P. Lefebvre & P. Schlesinger. 2006. Modelling conservation in the Amazon basin. Nature 440: 520–523.PubMedGoogle Scholar
  162. Sombroek, W. 2000. Amazon landforms and soils in relation to biological diversity. Acta Amazonica 30: 81–100.Google Scholar
  163. Spracklen, D. V., S. R. Arnold & C. M. Taylor. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 482: 282–285.Google Scholar
  164. Stickler, C. M., M. T. Coe, M. H. Costa, D. C. Nepstad, D. G. McGrath, L. C. Dias, H. O. Rodrigues & B. S. Soares-Filho. 2013. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proceedings of the National Academy of Sciences 110: 9601–9606.Google Scholar
  165. Sturm, C., G. Hoffmann & B. Langmann. 2007. Simulation of the stable water isotopes in precipitation over South America: Comparing regional to global circulation models. Journal of climate 20: 3730–3750.Google Scholar
  166. Stute, M., M. Forster, H. Frischkorn, A. Serejo, J. Clark, P. Schlosser, W. Broecker & G. Bonani. 1995. Cooling of tropical Brazil (5°C) during the Last Glacial Maximum. Science 269: 379–383.PubMedGoogle Scholar
  167. Svenning, J.-C. & R. S. Condit. 2008. Biodiversity in a warmer world. Science 322: 206–207.PubMedGoogle Scholar
  168. ——— & Sandel, B. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100: 1–21.Google Scholar
  169. Taiz, L. & E. Zeiger. 1998. Plant Physiology. Sinauer Associates Inc, Sunderland, Massachusetts.Google Scholar
  170. ter Steege, H., D. Sabatier, H. Castellanos, T. van Andel, J. Duivenvoorden, A. A. de Oliveira, R. Ek, R. Lilwah, P. Maas & S. Mori. 2000. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. Journal of Tropical Ecology 16: 801–828.Google Scholar
  171. ———, N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, J. F. Molino, M. F. Prévost, R. Spichiger, H. Castellanos, P. von Hildebrand & R. Vásquez. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443: 444–447. doi: 10.1038/nature05134.PubMedGoogle Scholar
  172. ———, ———, D. Sabatier, H. Castellanos, P. van Der Hout, D. C. Daly, M. Silveira, O. L. Phillips, R. Vasquez & T. van Andel. 2003. A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation 12: 2255–2277.Google Scholar
  173. ———, ———, ———, C. Baraloto, R. P. Salomão, J. E. Guevara, O. L. Phillips. C. V. Castilho, W. E. Magnusson, J.-F. Molino, A. Monteagudo, P. Núñez Vargas, et al, C. Baraloto, R. P. Salomão, J. E. Guevara, O. L. Phillips. C. V. Castilho, W. E. Magnusson, J.-F. Molino, A. Monteagudo, P. Núñez Vargas, et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342.Google Scholar
  174. Terborgh, J. & E. Andresen. 1998. The composition of Amazonian forests: patterns at local and regional scales. Journal of Tropical Ecology 14: 645–664.Google Scholar
  175. Trenberth, K. E. 1999. Atmospheric moisture recycling: role of advection and local evaporation. Journal of Climate 12: 1368–1381.Google Scholar
  176. Tribuzy, E. 2005. Variacões da temperatura foliar do dossel eo seu efeito na taxa assimilatória de CO2 na Amazônia Central. PhD dissertation, Universidade de Sao Paulo.Google Scholar
  177. Urrego, D. H., M. B. Bush, M. R. Silman, B. A. Niccum, P. La Rosa, C. H. McMichael, S. Hagen & M. Palace. 2013. Holocene fires, forest stability and human occupation in south-western Amazonia. Journal of Biogeography 40: 521–533.Google Scholar
  178. van Breukelen, M., H. Vonhof, J. Hellstrom, W. Wester & D. Kroon. 2008. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and Planetary Science Letters 275: 54–60.Google Scholar
  179. van der Hammen, T. & H. Hooghiemstra. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19: 725–742.Google Scholar
  180. van der Molen, M., A. Dolman, P. Ciais, T. Eglin, N. Gobron, B. Law, P. Meir, W. Peters, O. Phillips & M. Reichstein. 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology 151: 765–773.Google Scholar
  181. Victoria, R., L. Matinelli, J. Moraes, M. Ballester, A. Krusche, G. Pellegrino, R. Almeida & J. Richey. 1998. Surface air temperature variations in the Amazon region and its border during this century. Journal of Climate 11: 1105–1110.Google Scholar
  182. Vincent, L. A., T. Peterson, V. Barros, M. Marino, M. Rusticucci, G. Carrasco, E. Ramirez, L. Alves, T. Ambrizzi & M. Berlato. 2005. Observed trends in indices of daily temperature extremes in South America 1960–2000. Journal of Climate 18: 5011–5023.Google Scholar
  183. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedGoogle Scholar
  184. Wang, S., A. Chen, J. Fang & S. W. Pacala. 2013. Why abundant tropical tree species are phylogenetically old. Proceedings of the National Academy of Sciences 110: 16039–16043.Google Scholar
  185. Wanner, H., J. Beer, J. Bütikofer, T. J. Crowley, U. Cubasch, J. Flückiger, H. Goosse, M. Grosjean, F. Joos & J. O. Kaplan. 2008. Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews 27: 1791–1828.Google Scholar
  186. Williams, J. W., S. T. Jackson & J. E. Kutzbach. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences 104: 5738–5742.Google Scholar
  187. Williamson, G. B., W. F. Laurance, A. A. Oliveira, P. P. Delamônica, C. Gascon, T. E. Lovejoy & L. Pohl. 2000. Amazonian tree mortality during the 1997 El Niño drought. Conservation Biology 14: 1538–1542.Google Scholar
  188. Wright, S. J. 1992. Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends in ecology & evolution 7: 260–263.Google Scholar
  189. ——— 2005. Tropical forests in a changing environment. Trends in Ecology & Evolution 20: 553–560.Google Scholar
  190. Würth, M., K. Winter & C. Körner. 1998. In situ responses to elevated CO2 in tropical forest understorey plants. Functional Ecology 12: 886–895.Google Scholar
  191. Zeng, N., J. H. Yoon, J. A. Marengo, A. Subramaniam, C. A. Nobre, A. Mariotti & J. D. Neelin. 2008. Causes and impacts of the 2005 Amazon drought. Environmental Research Letters 3: 1–9.Google Scholar
  192. Zeng, Z., S. Piao, A. Chen, X. Lin, H. Nan, J. Li & P. Ciais. 2013. Committed changes in tropical tree cover under the projected 21st century climate change. Scientific Reports 3: 1–6.Google Scholar

Copyright information

© The New York Botanical Garden 2015

Authors and Affiliations

  • Ingrid Olivares
    • 1
  • Jens-Christian Svenning
    • 1
  • Peter M. van Bodegom
    • 2
  • Henrik Balslev
    • 1
    Email author
  1. 1.Section for Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhus CDenmark
  2. 2.Department of Ecological Science, Section of Systems EcologyVrije University AmsterdamAmsterdamThe Netherlands

Personalised recommendations