The Botanical Review

, Volume 80, Issue 1, pp 30–58 | Cite as

Diversification Times and Biogeographic Patterns in Apiales

  • Antoine N. NicolasEmail author
  • Gregory M. Plunkett


This study provides an overview of the historical biogeography of the major clades of Apiales based on extensive taxon sampling from all major lineages of the order, and character sampling of sequence data from the plastid rpl16 intron and trnD-trnY-trnE-trnT intergenic spacers. Divergence times were estimated in BEAST using relaxed molecular clocks and six calibration points from three families. Biogeographic reconstructions were estimated in DIVA and Lagrange using stratified and non-stratified models, addressing alternative scenarios for taxa with conflicting or poorly supported placements. Our analyses in BEAST estimated the origin of Apiales to Australasia in the Early Cretaceous (c.117 Ma). Most major clades also appear to have originated in Australasia, with the youngest family (Apiaceae) originating in the Late Cretaceous, c. 87 Ma. Diversification of the early lineages appears to be influenced by vicariance events related to the break up of Africa and Australasia (Torricelliaceae from Griseliniaceae and Apiineae), Australasia from Zealandia (e.g., Myodocarpaceae and Araliaceae), and Antarctica from South America, Australia, and possibly Africa (main lineages of Apiaceae). Long-distance dispersal appears as the likely explanation for many younger lineages within major clades, including Subantarctic pathways (e.g., Griseliniaceae and Azorelloideae), across the Pacific and Indian Ocean Basins (e.g., Pittosporaceae and Araliaceae), from Asia across Europe into the Americas (Araliaceae).


Apiales Apiaceae Araliaceae Australasia Antarctica Cretaceous 



The authors thank the following people and institutions for providing assistance in obtaining plant samples: P. P. Lowry II, G. T. Chandler, P. Goldblatt, P. B. Phillipson, †L. Constance, J.-P. Reduron, J. Wen, R. J. Bayer, C. Gemmill, A. D. Mitchell, B.-E. van Wyk, P. M. Tilney, A. R. Magee, P. C. Zietsman, Q.-Y. Xiang, G. E. Schatz, D. A. Neill, W. Takeuchi, G. Keppel, B. Gray, R. Jensen, L. W. Cayzer, I. R. H. Telford, L. Hufford, M. E. Mort, D. M. E. Ware, P. Fiaschi, D. Lorence, D. K. Harder, M. O. Dillon, L. A. Johnson, and the Missouri Botanical Garden (MO), Muséum National d’Histoire Naturelle (P), United States National Herbarium (US), University of Waikato (WAIK), Australian National Herbarium (CANB), Royal Botanic Gardens Kew (K), New York Botanical Garden (NY), Huntington Botanical Garden (HNT), National Tropical Botanical Garden (PTBG), University of California Botanical Garden (UC), Bloemfontein Museum (BLFU), Parc Zoologique et Botanique de la Ville de Mulhouse, Bogor Botanical Garden, South Pacfic Regional Herbarium (SUVA), Universidade de São Paulo (SPF), CSIRO-Atherton, and Washington State University (WS). Assistance was also provided by the Integrated Life Sciences Program of Virginia Commonwealth University. Support for field and laboratory work was provided by the National Science Foundation (DEB 0949819 and 0613728/0943958) and the National Geographic Society (CRE 8355–07).

Supplementary material

12229_2014_9132_MOESM1_ESM.txt (230 kb)
Appendix S1 Treefile output from BEAST analysis. The FigTree computer program can be used to display the chronogram posterior probabilities, median ages, error bars, age ranges, and other data associated with the BEAST output. FigTree is a free program available for download at (TXT 229 kb)
12229_2014_9132_MOESM2_ESM.txt (146 kb)
Appendix S2 Output file resulting from the Lagrange analyses under three different models of dispersal. The file includes the geographic area(s) next to each terminal and all possibilities of biogeographic splits at each node (with relative probabilities). (TXT 146 kb)

Literature Cited

  1. Axelrod, A. J. 1952. A theory of angiosperm evolution. Evolution 6: 29–60.Google Scholar
  2. Barlow, B. A. 1981. The Australian flora: its origin and evolution. In: A. S. George (ed). Flora of Australia, 1: 25–76. Australian Government Publishing Service, Canberra.Google Scholar
  3. Bell, C. D., D. E. Soltis & P. S. Soltis. 2005. The age of the angiosperms: a molecular timescale without a clock. Evolution 59: 1245–1258.PubMedGoogle Scholar
  4. ——— & M. J. Donoghue. 2005. Dating the diversification of Dipsacales: comparing models, genes, and evolutionary implications. American Journal of Botany 92: 284–296.PubMedGoogle Scholar
  5. Bessey, C. E. 1897. Phylogeny and taxonomy of the angiosperms. Botanical Gazette 24: 145–178.Google Scholar
  6. Bohlmann, F. 1971. Acetylenic compounds in the Umbelliferae. Botanical Journal of the Linnean Society 64(suppl): 279–291.Google Scholar
  7. Bremer, K. 2000. Early Cretaceous lineages of monocots flowering plants. Proceedings of the National Academy of Sciences, USA 97: 4707–4711.Google Scholar
  8. ———, E. Friis & B. Bremer. 2004. Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Systematic Biology 53: 496–505.PubMedGoogle Scholar
  9. Brenner, G. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. Pp 91–115. In: D. W. Taylor & L. J. Hickey (eds). Flowering plant origin, evolution, and phylogeny. Chapman and Hall, New York.Google Scholar
  10. Briggs, J. C. 2003. The biogeographic and tectonic history of India. Journal of Biogeography 30: 381–388.Google Scholar
  11. Brundin, L. Z. 1966. Transantartic relationships and their significance, as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteninae and the austral Heptagyiae. Kungliga Svenska Vetenskapsakadamiens Handlingar 11: 1–474.Google Scholar
  12. Bryan, C. L., B. D. Clarkson & M. J. Clearwater. 2011. Biological flora of New Zealand 12: Griselinia lucida, puka, akapuka, akakōpuka, shining broadleaf. New Zealand Journal of Botany 49: 461–479.Google Scholar
  13. Burrows, C. 1995. Germination behaviour of seeds of the New Zealand species Fuchsia excorticata, Griselinia littoralis, Macropiper excelsum, and Melicytus ramiflorus. New Zealand Journal of Botany 33: 131–140.Google Scholar
  14. ——— 1999. Germination behaviour of seeds of the New Zealand woody species Beilschmiedia tawa, Dysoxylum spectabile, Griselinia lucida, and Weinmannia racemosa. New Zealand Journal of Botany 37: 95–105.Google Scholar
  15. Carlquist, S. 1974. Island biology. Columbia Univ, Press, New York.Google Scholar
  16. ——— 1981. Chance dispersal. American Scientist 69: 509–516.Google Scholar
  17. Chandler, G. T. & G. M. Plunkett. 2004. Evolution in Apiales: nuclear and chloroplast markers together in (almost) perfect harmony. Botanical Journal of the Linnean Society 144: 123–147.Google Scholar
  18. ———, ———, S. M. Pinney, L. Cayzer & C. Gemmill. 2007. Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis using nuclear ITS and plastid trnL-trnF sequence data. Australian Systematic Botany 20: 390–401.Google Scholar
  19. Chaw, S.-M., C.–. C. Chang, H.-L. Chen & W.–. H. Li. 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. Journal of Molecular Evolution 58: 424–441.PubMedGoogle Scholar
  20. Chazeau, J. 1993. Research on New Caledonian terrestrial fauna: achievements and prospects. Biodiversity Letters 1: 123–129.Google Scholar
  21. Cox, C. B. & P. D. Moore. 2010. Biogeography: An ecological and evolutionary approach. Wiley, Hoboken.Google Scholar
  22. Darlington, C. D. & A. P. Wylie. 1955. Chromosome Atlas of flowering plants. George Allen & Unwin, London.Google Scholar
  23. De Kok, R. 2002. Are plant adaptations to growing on serpentine soil rare or common? A few case studies from New Caledonia. Adansonia 24: 229–238.Google Scholar
  24. Diamond, J. M. 1984. “Normal” Extinctions of Isolated Populations. Pp 191–246. In: M. Nitecki (ed). Extinctions. University of Chicago Press, Chicago.Google Scholar
  25. Dilcher, D. L. & G. E. Dolph. 1970. Fossil leaves of Dendropanax from Eocene sediments of southeastern North America. American Journal of Botany 57: 153–160.Google Scholar
  26. Dillon, M. O. & M. Muñoz-Schick. 1993. A revision of the dioecious genus Griselinia (Griseliniaceae), including a new species from the coastal Atacama Desert of northern Chile. Brittonia 45: 261–274.Google Scholar
  27. Doyle, J. A. & P. K. Endress. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. Journal of Systematics and Evolution 48: 1–35.Google Scholar
  28. Drummond, A. J., S. Y. W. Ho, M. J. Phillips & A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.PubMedCentralPubMedGoogle Scholar
  29. ——— & A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.PubMedCentralPubMedGoogle Scholar
  30. Erbar, C. & P. Leins. 2010. Nectaries in Apiales and related groups. Plant Diversity and Evolution 128: 269–295.Google Scholar
  31. Farabee, M. J. 1993. Morphology of triprojectate fossil pollen: form and distribution in space and time. The Botanical Review 59: 211–249.Google Scholar
  32. Friis, E. M., K. R. Pedersen & P. R. Crane. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in early Cretaceous floras from Portugal. Annals of the Missouri Botanical Garden 86: 259–296.Google Scholar
  33. Gaina, C., D. R. Müller, J.-Y. Royer, J. Stock, J. Hardebeck & P. Symonds. 1998. The tectonic history of the Tasman Sea: a puzzle with 13 pieces. Journal of Geophysical Research 103: 12,413–12,433.Google Scholar
  34. Gemmill, C. E. C., G. J. Allan, W. L. Wagner & E. A. Zimmer. 2002. Evolution of insular Pacific Pittosporum (Pittosporaceae): origin of the Hawaiian radiation. Molecular phylogenetics and evolution 22: 31–42.PubMedGoogle Scholar
  35. Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographic connections between Central and South America, Pleistocene climatic fluctuation, or an accident of the Andean orogeny. Annals of the Missouri Botanical Garden 69: 557–593.Google Scholar
  36. Gernhard, T. 2008. The conditioned reconstructed process. Journal of Theoretical Biology 253: 769–778.PubMedGoogle Scholar
  37. Grandcolas, P., J. Murienne, T. Robillard, L. Desutter-Grandcolas, H. Jourdan, E. Guilbert & L. Deharveng. 2008. New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society B: Biological Sciences 363: 3309–3317.Google Scholar
  38. Gruas-Cavagnetto, C. & M.-T. Cerceau-Larrival. 1984. Apport des pollens fossiles d’ombellifères à la connaissance paléoécologique et paléoclimatique de l’Eocène français. Review of Palaeobotany and Palynology 40: 317–345.Google Scholar
  39. Heads, M. 2008. Panbiogeography of New Caledonia, south-west Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands. Journal of Biogeography 35: 2153–2175.Google Scholar
  40. ——— 2010. Biogeographical affinities of the New Caledonian biota: a puzzle with 24 pieces. Journal of Biogeography 37: 1179–1201.Google Scholar
  41. Hegnauer, R. 1971. Chemical patterns and relationships of Umbelliferae. Pages 267–277 in: V. H. Heywood (ed.), The biology and chemistry of the Umbelliferae. Botanical Journal of the Linnean Society Supplement, Vol 64.Google Scholar
  42. Herendeen, P. S., S. Magallón-Puebla, R. Lupia, P. R. Crane & J. Kobylinska. 1999. A preliminary conspectus of the Allon flora from the Late Cretaceous (late Santonian) of central Georgia, U.S.A. Annals of the Missouri Botanical Garden 86: 407–471.Google Scholar
  43. Jaffré, T. 1993. Relation between ecological diversity and floristic diversity in New Caledonia. Biodiversity Letters 1: 82–91.Google Scholar
  44. Jay, M. 1969. Chemotaxonomic researches on vascular plants XIX. Flavonoid distribution in the Pittosporaceae. Botanical Journal of the Linnean Society 62: 423–429.Google Scholar
  45. Jolivet, P. & K. K. Verma. 2010. Good morning Gondwana. Annales de la Société entomologique de France (N.S.): International. Journal of Entomology 46: 53–61.Google Scholar
  46. Jurica, H. S. 1922. A morphological study of the Umbelliferae. Botanical Gazette 74: 292–307.Google Scholar
  47. Kårehed, J. 2003. The family Pennantiaceae and its relationships to Apiales. Botanical Journal of the Linnean Society 141: 1–24.Google Scholar
  48. Knobloch, E. & D. H. Mai. 1986. Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy ústredního ústavu geologickénho, Praha 47: 1–219.Google Scholar
  49. Kula, J., A. Tulloch, T. L. Spell & M. L. Wells. 2007. Two-stage rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters Shear Zone; Stewart Island, New Zealand. Geology 35: 411–414.Google Scholar
  50. Ladiges, P. Y., F. Udovicic & G. Nelson. 2003. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. Journal of Biogeography 30: 989–998.Google Scholar
  51. ——— & D. Cantrill. 2007. New Caledonia–Australian connections: biogeographic patterns and geology. Australian Sysematic Botany 20: 383–389.Google Scholar
  52. Landis, C. A., H. J. Campbell, J. G. Begg, D. C. Mildenhall, A. M. Paterson & S. A. Trewick. 2008. The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145: 173–197.Google Scholar
  53. Lawver, L. A. & L. M. Gahagan. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 11–37.Google Scholar
  54. Linder, H. P. & M. D. Crisp. 1996. Nothofagus and Pacific biogeography. Cladistics 11: 5–32.Google Scholar
  55. Lowry, P. P. I. I. 1986. A systematic study of Delarbrea (Araliaceae). Allertonia 4: 169–201.Google Scholar
  56. Lowry, P. P. II. 1991. Evolutionary patterns in the flora and vegetation of New Caledonia. Pages 373–379. in The unity of evolutionary biology. Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology. Dioscorides Press, Portland, Oregon.Google Scholar
  57. Lowry, P. P., II. 1998. Diversity, endemism, and extinction in the flora of New Caledonia: a review. Pp 181–206. In: C.–. I. Peng & P. P. Lowry II (eds). Rare, threatened, and endangered floras of the Pacific Rim. Institute of Botany, Academica Sinica, Monogr, Taipei. Ser. No. 16.Google Scholar
  58. Magallón-Puebla, S., P. R. Crane & P. S. Herendeen. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Annals of the Missouri Botanical Garden 86: 297–372.Google Scholar
  59. Magallón, S. & M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780.PubMedGoogle Scholar
  60. Magee, A. R., C. I. Calviño, M. Liu, S. R. Downie, P. M. Tilney & B.-E. van Wyk. 2010. New tribal delimitations for the early diverging lineages of Apiaceae subfamily Apioidae. Taxon 59: 567–580.Google Scholar
  61. Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Paleontographica Americana 58: 38–39.Google Scholar
  62. ——— 1999. Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden 86: 472–522.Google Scholar
  63. ———, Z.-D. Chen, A.-M. Lu & K. Uemura. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution 47: 1–42.Google Scholar
  64. Martínez-Millán, M. 2010. Fossil records and age of the Asteridae. The Botanical Review 76: 83–135.Google Scholar
  65. Mathias, M. E. 1965. Distribution patterns of certain Umbelliferae. Annals of the Missouri Botanical Garden 52: 387–398.Google Scholar
  66. Mayer, M. S. & P. S. Soltis. 1994. The evolution of serpentine endemics: a cpDNA phylogeny of Streptanthus glandulosus complex (Cruciferae). Systematic Botany 19: 557–574.Google Scholar
  67. McLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49: 271–300.Google Scholar
  68. McPhail, M. K. 1997. The New Zealand flora: entirely long–distance dispersal? Journal of Biogeography 24: 113–117.Google Scholar
  69. Mégard, F. 1984. The Andean orogenic period and its major structures in central and northern Peru. Journal of the Geological Society Geological Society of London 141: 893–900.Google Scholar
  70. Mildenhall, D. C. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Paleoclimatology, Palaeoecology 31: 197–233.Google Scholar
  71. Miller, G. H., M. L. Fogel, J. W. Magee, M. K. Gagan, S. J. Clarke & B. J. Johnson. 2005. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309: 287–290.PubMedGoogle Scholar
  72. Mitchell, A. & J. Wen. 2004. Phylogenetic utility and evidence for multiple copies of granule-bound starch synthase I (GBSSI) in the Araliaceae. Taxon 53: 29–41.Google Scholar
  73. Morat, P. H. 1993. Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1: 72–81.Google Scholar
  74. Morat, P., T. Jaffré & J. M. Veillon. 2001. The flora of New Caledonia’s Calcareous substrate : tolerance or dependence. Adansonia 23: 1–19.Google Scholar
  75. Morley, R. J. 2003. Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6: 5–20.Google Scholar
  76. Morrone, J. J. 2009. Evolutionary biogeography: An integrative approach with case studies. Columbia University Press, New York.Google Scholar
  77. Murienne, J., P. Grandcolas, M. D. Piulachs, X. Bellés, C. D’Haese, F. Legendre, R. Pellens & E. Guilbert. 2005. Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia. Cladistics 21: 2–7.Google Scholar
  78. Nelson, G. 1975. Historical biogeography: an alternative formalization. Systematic Zoology 24: 555–558.Google Scholar
  79. Nicolas, A. N. 2009. Understanding evolutionary relationships within the angiosperm order Apiales based on analyses of organellar DNA sequences and nuclear gene duplications. Ph.D. Dissertation. Virginia Commonwealth University, Virginia.Google Scholar
  80. ——— & G. M. Plunkett. 2009. The demise of subfamily Hydrocotyloideae (Apiaceae) and the realignment of its genera across the whole order Apiales. Molecular Phylogenetics and Evolution 53: 134–151.PubMedGoogle Scholar
  81. ——— & ———. 2012. Untangling Azorella, Laretia, and Mulinum (Apiaceae, Azorelloideae): insights from phylogenetics and biogeography. Taxon 61: 824–840.Google Scholar
  82. Oskolski, A. A. & P. P. Lowry II. 2000. Wood anatomy of Mackinlaya and Apiopetalum (Araliaceae) and its systematic implications. Annals of the Missouri Botanical Garden 87: 171–182.Google Scholar
  83. Pielou, E. C. 1979. Biogeography. Wiley, New York.Google Scholar
  84. Plunkett, G. M., D. E. Soltis & P. S. Soltis. 1996a. Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. American Journal of Botany 83: 499–515.Google Scholar
  85. ———, ——— & ———. 1996b. Evolutionary patterns in Apiaceae: inferences based on matK sequence data. Systematic Botany 21: 477–495.Google Scholar
  86. ———, ——— & ———. 1997. Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. American Journal of Botany 84: 565–580.PubMedGoogle Scholar
  87. ——— & P. P. Lowry II. 2001. Relationships among ‘ancient araliads’ and their significance for the systematics of Apiales. Molecular Phylogenetics and Evolution 19: 259–276.Google Scholar
  88. ———, P. P. Lowry II, & M. K. Burke. 2001. The phylogenetic status of Polyscias (Araliaceae) based on nuclear ITS sequence data. Annals of the Missouri Botanical Garden 88: 213–230.Google Scholar
  89. ———, G. T. Chandler, P. P. Lowry II, S. M. Pinney, & T. S. Sprenkle. 2004a. Recent advances in understanding Apiales and a revised classification. South African Journal of Botany 70: 371–381.Google Scholar
  90. ———, P. P. Lowry II, & N. V. Vu. 2004b. Phylogenetic relationships among Polyscias (Araliaceae) and close relatives from the Indian Ocean basin. International Journal of Plant Sciences 165: 861–873.Google Scholar
  91. ———, J. Wen, & P. P. Lowry II. 2004c. Infrafamilial relationships in Araliaceae: insights from plastid (trnL-trnF) and nuclear (ITS) sequence data. Plant Systematics and Evolution 245: 1–39.Google Scholar
  92. ——— & P. P. Lowry II. 2010. Paraphyly and polyphyly in Polyscias sensu lato: molecular evidence and the case for recircumscribing the “pinnate genera” of Araliaceae. Plant Diversity and Evolution 128: 23–54.Google Scholar
  93. Pole, M. S. 1994. The New Zealand flora – entirely long–distance dispersal? Journal of Biogeography 21: 625–635.Google Scholar
  94. ——— 2001. Can long–distance dispersal be inferred from the New Zealand plant fossil record? Australian Journal of Botany 49: 357–366.Google Scholar
  95. Pole, M. 2008. Dispersed leaf cuticle from the early Miocene of southern New Zealand. Palaeontologia Electrionica 11.3(15A): 1–117.Google Scholar
  96. Posada, D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedGoogle Scholar
  97. Rambaut, A. & A. J. Drummond. 2007. Tracer v. 1.4: MCMC trace analyses tool. Available from:
  98. Ravala, U. & K. Veeraswamya. 2003. India-Madagascar separation: breakup along a pre-existing mobile belt and chipping of the craton. Gondwana Research 6: 467–485.Google Scholar
  99. Raven, P. H. & D. I. Axelrod. 1972. Plate tectonics and Australasian paleobiogeography. Science 176: 1379–1386.PubMedGoogle Scholar
  100. ——— & ———. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539–673.Google Scholar
  101. Ree, R. H., B. R. Moore, C. O. Webb & M. J. Donoghue. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 2299–2311.PubMedGoogle Scholar
  102. ——— & S. A. Smith. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4–14.PubMedGoogle Scholar
  103. Renner, S. S. 2004. Multiple Miocene Melastomataceae dispersal between Madagascar, Africa, and India. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 1485–1494.Google Scholar
  104. Rodríguez, R. L. 1971. The relationships of the Umbellales. Pages 63–91 in: V. H. Heywood (ed.), The biology and chemistry of the Umbelliferae. Botanical Journal of the Linnean Society Supplement, Vol 64.Google Scholar
  105. Ronquist, F. 1996. DIVA version 1.1. Computer program and manual available by anonymous FTP from Uppsala University ( or Scholar
  106. ——— 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46: 195–203.Google Scholar
  107. ——— & J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedGoogle Scholar
  108. Rutschmann, F. 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions 12: 35–48.Google Scholar
  109. Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution 14: 1218–1231.Google Scholar
  110. ——— & J. A. Doyle. 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. American Journal of Botany 88: 1499–1516.PubMedGoogle Scholar
  111. Sanmartín, I. & F. Ronquist. 2004. Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53: 216–243.PubMedGoogle Scholar
  112. Schatz, G. E. 1996. Malagasy/Indo-Australo-Malesian phytogeographic connections. Pp 73–83. In: W. R. Lourenço (ed). Biogeography of Madagascar. Editions ORSTOM, Paris.Google Scholar
  113. Schneider, J., E. Schuettpelz, K. M. Pryer, R. Cranfill, S. Magallón & R. Lupia. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553–557.PubMedGoogle Scholar
  114. Schwarz, M. P., S. Fuller, S. M. Tierney & S. J. B. Cooper. 2006. Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. Systematic Biology 55: 31–45.PubMedGoogle Scholar
  115. Sclater, P. L. 1858. On the general geographical distribution of the members of the class Aves. Zoological Journal of the Linnean Society 2: 130–145.Google Scholar
  116. Seemann, B. 1863. On the position of the genera Hydrocotyle, Opa, Commia, and Blastus in the natural system. The Journal of Botany, British and Foreign 1: 278–282.Google Scholar
  117. Shields, O. 1991. Pacific biogeography and rapid earth expansion. Journal of Biogeography 18: 583–585.Google Scholar
  118. Shoup, J. R. & C. C. Tseng. 1977. Pollen of Klotzschia (Umbelliferae): a possible link to Araliaceae. American Journal of Botany 64: 461–463.Google Scholar
  119. Spalik, K., M. Piwczyński, C. A. Danderson, R. Kurzyna-Młynik, T. S. Bone & S. R. Downie. 2010. Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae. Journal of Biogeography 37: 1977–1994.Google Scholar
  120. Stevenson, J. & G. Hope. 2005. A comparison of late Quaternary forest changes in New Caledonia and northeastern Australia. Quaternary Research 64: 372–383.Google Scholar
  121. Stöckler, K., I. L. Daniel & P. J. Lockhart. 2002. New Zealand kauri (Agathis australis (D.Don) Lindl., Araucariaceae) survives Oligocene drowning. Systematic Biology 51: 827–832.PubMedGoogle Scholar
  122. Swenson, U., A. Backlund, S. McLoughlin & R. S. Hill. 2001. Nothofagus biogeography revisited with special emphasis on the enigmatic distribution of subgenus Brassospora in New Caledonia. Cladistics 17: 28–47.Google Scholar
  123. Takhtajan, A. 1986. Floristic regions of the world. T.J. Crovello (translator). University of California Press, Berkeley.Google Scholar
  124. Trewick, S. A., A. M. Paterson & H. J. Campbell. 2007. Hello New Zealand. Journal of Biogeography 34: 1–6.Google Scholar
  125. Trueman, C. N. G., J. H. Field, J. Dortch, B. Charles & S. Wroe. 2005. Prolonged coexistence of humans and megafauna in Pleistocene Australia. PNAS 102: 8381–8385.PubMedCentralPubMedGoogle Scholar
  126. Wallace, A. R. 1876. The geographic distribution of animals, 2 vols. Harper, New York.Google Scholar
  127. Wen, J., G. M. Plunkett, A. D. Mitchell & S. J. Wagstaff. 2001. The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Systematic Botany 26: 144–167.Google Scholar
  128. Wikström, N., V. Savolainen & M. W. Chase. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences 268: 2211–2220.PubMedCentralPubMedGoogle Scholar
  129. Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation, The University of Texas at Austin, Texas.Google Scholar

Copyright information

© The New York Botanical Garden 2014

Authors and Affiliations

  1. 1.Cullman Program for Molecular SystematicsThe New York Botanical GardenBronxUSA

Personalised recommendations