The Botanical Review

, Volume 79, Issue 3, pp 281–316

Weed Seed Survival during Anaerobic Digestion in Biogas Plants

Article

Abstract

Anaerobic digestion using animal manure and crop biomass is increasingly being used to produce biogas as a durable alternative to fossil fuel. The sludge, the leftover after processing, is returned to the field as a crop fertilizer. If weed seeds survive anaerobic digestion, the use of contaminated sludge poses a phytosanitary risk. The conditions that seeds are likely to encounter in biogas plants, and the effect of these, in particular temperature, on seed viability were reviewed. Knowledge on seed defence mechanisms and how these might protect seeds from inactivation in biogas reactors was summarized. Mechanisms of seed inactivation can be classified as thermal, biological and chemical. Weed species with hard seeds (physical dormant), high thermoresistance, a thick seed coat or adapted to endozoochory were identified as high-risk species. Specific seed traits could be used in future tests to circumvent extensive testing of seeds in biogas reactors.

Keywords

Anaerobic digestion Biogas reactors High-risk species Physical dormancy Thermoresistance Weed seed survival 

Literature Cited

  1. Alomar, D. C., O. L. Balocchi, A. M. Estai & J. C. Taladriz. 1992. Recuperacion, germinacion y viabilidad de semillas de especies forrejeras sometidas a la fermentacion ruminal. Agro. Sur. 20: 101–109 (in Spanish).Google Scholar
  2. ———, A. Wilhelm & O. L. Balocchi. 1994. Excrecion fecal y germinacion de semillas de leguminosas forrajeras consumidas por ovinos. Agro. Sur. 22: 33–40. in Spanish.Google Scholar
  3. ———, D. C. & V. Ulloa. 1994. Recuperacion fecal y viabilidad de semillas de tres gramineas forrajeras consumidas por ovinos. Agro. Sur. 22: 107–114 (in Spanish).Google Scholar
  4. Arthurson, V. 2009. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks. Energies 2: 226–242.CrossRefGoogle Scholar
  5. Bailly, C., H. El-Maarouf-Bouteau & F. Corbineau. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331: 806–814.PubMedCrossRefGoogle Scholar
  6. Bar-Or, Y. 1990. The effect of adhesion on survival and growth of microorganisms. Experientia 46: 823–826.CrossRefGoogle Scholar
  7. Baskin, C. C. & J. M. Baskin. 1998. Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego.Google Scholar
  8. Baskin, J. M., C. C. Baskin & X. Li. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15: 139–152.CrossRefGoogle Scholar
  9. Bayane, A. & S. R. Guiot. 2011. Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Reviews in Environmental Science and Biotechnology 10: 43–62.CrossRefGoogle Scholar
  10. Bekker, R. M., J. P. Bakker, U. Grandin, R. Kalamees, P. Milberg, P. Poschlod, K. Thompson & J. H. Willems. 1998. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology 12: 834–842.CrossRefGoogle Scholar
  11. Belay, N. & L. Daniels. 1987. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Applied and Environmental Microbiology 53: 1604–1610.PubMedGoogle Scholar
  12. Bendixen, H. J. 1994. Safeguards against pathogens in Danish biogas plants. Water Science and Technology 30: 171–180.Google Scholar
  13. Berg, G. & D. Berman. 1980. Destruction by anaerobic mesophilic and thermophilic digestion of viruses and indicator bacteria indigenous to domestic sludges. Applied and Environmental Microbiology 39: 361–368.PubMedGoogle Scholar
  14. Bewley, J. D. & M. Black. 1994. Seeds: Physiology of development and germination, ed. 2nd. Plenum Press, New York.Google Scholar
  15. Blackshaw, R. E. & L. M. Rode. 1991. Effect of ensiling and rumen digestion by cattle on weed seed viability. Weed Science 39: 104–108.Google Scholar
  16. Böhm, R., H. Buchenauer, K. H. Hellwand, A. Knie, H. Lorenz & W. Phillips. 2000. Untersuchungen zur Seuchen- und Phytohygiene in Anaerobanlagen, Zwischenbericht anlässlich des Statusseminar der Baden-Württemberg-Projektträgerschaft “Lebensgrundlage Umwelt und ihre Sicherung”(BWPLUS) am 1. und 2. März 2000 im Forschungszentrum Karlsruhe. http://bwplus.fzk.de/berichte/ZBer/2000/ZBerPUGU98009.pdf (last accessed 1 November 2011) (in German).
  17. Bonn, S. & P. Poschlod. 1998. Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und kulturhistorische Aspekte. Quelle & Meyer Verlag, Wiesbaden (in German).Google Scholar
  18. Broekaert, W. F., F. R. G. Terras, B. P. A. Cammue & R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defence system. Plant Physiology 108: 1353–1358.PubMedCrossRefGoogle Scholar
  19. Bruun, H. H. & P. Poschlod. 2006. Why are small seeds dispersed through animal guts: large numbers or seed size per se? Oikos 113: 402–411.CrossRefGoogle Scholar
  20. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. BioAbfV – Bioabfallverordnung, Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden. Bundesgesetzblatt Teil I G 5702, Nr 65 (21 September 1998). http://www.bmu.de/abfallwirtschaft/downloads/doc/5298.php. (last accessed 1 November 2011) (in German).
  21. Capela, I., M. João Bilé, F. Silva, H. Nadais, A. Prates & L. Arroja. 2009. Hydrodynamic behaviour of a full-scale anaerobic contact reactor using residence time distribution technique. Journal of Chemical Technology and Biotechnology 84: 716–724.CrossRefGoogle Scholar
  22. Carpanelli, M. E., C. S. Schauer, D. W. Bohnert, S. P. Hardegree, S. J. Falck & T. J. Svejcar. 2005. Effect of ruminal incubation on perennial pepperweed germination. Rangeland Ecology & Management 58: 632–636.CrossRefGoogle Scholar
  23. Carrington, E. G., S. A. Harman & E. B. Pike. 1982. Inactivation of Salmonella during anaerobic digestion of sewage sludge. Journal of Applied Bacteriology 53: 331–334.PubMedCrossRefGoogle Scholar
  24. Chee-Sanford, J. C., M. M., II Williams, A. S. Davis & G. K. Sims. 2006. Do microorganisms influence seed-bank dynamics? Weed Science 54: 575–587.Google Scholar
  25. Chen, Y., J. J. Cheng & K. S. Creamer. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99: 4044–4064.PubMedCrossRefGoogle Scholar
  26. Clay, K. & C. Schardl. 2002. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist 160: S99–S127.PubMedCrossRefGoogle Scholar
  27. Colleran, E. 2000. Hygienic and sanitation requirements in biogas plants treating animal manures or mixtures of manures and other organic wastes. Pp 77–86. In: H. Ørtenblad (ed). Anaerobic digestion: making energy and solving modern waste problems. AD-NETT, Herning municipal utilities, Denmark. http://www.ava1.de/botulinum/DS4_Colleran-1.pdf. (last accessed 1 November 2011).Google Scholar
  28. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber & H. M. Lappin-Scott. 1995. Microbial films. Annual Revue of Microbiology 49: 711–745.CrossRefGoogle Scholar
  29. Cosyns, E., A. Delporte, L. Lens & M. Hoffmann. 2005. Germination success of temperate grassland species after passage through ungulate and rabbit guts. Journal of Ecology 93: 353–361.CrossRefGoogle Scholar
  30. Cudney, D. W., S. D. Wright, T. A. Shultz & J. S. Reints. 1992. Weed seed in dairy manure depends on collection site. California Agriculture 46: 31–32.Google Scholar
  31. Czerkawski, J. W. & G. Breckenridge. 1977. Design and development of a long-term rumen simulation technique (Rusitec). British Journal of Nutrition 38: 371–384.PubMedCrossRefGoogle Scholar
  32. Dahlquist, R. M., T. S. Prather & J. J. Stapleton. 2007. Time and temperature requirements for weed seed thermal death. Weed Science 55: 619–625.CrossRefGoogle Scholar
  33. Dalling, J. W., A. S. Davis, B. J. Schutte & A. E. Arnold. 2011. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. Journal of Ecology 99: 89–95.CrossRefGoogle Scholar
  34. Dastgheib, F. 1987. Relative importance of crop seed, manure and irrigation water as sources of weed infestation. Weed Research 29: 113–116.CrossRefGoogle Scholar
  35. Davis, A. S., B. J. Schutte, J. Iannuzzi & K. A. Renner. 2008. Chemical and physical defense of weed seeds in relation to soil seedbank persistence. Weed Science 56: 676–684.CrossRefGoogle Scholar
  36. Delouche, J. C. & C. C. Baskin. 1973. Accelerated aging techniques for predicting the relative storability of seed lots. Seed Science and Technology 1: 427–452.Google Scholar
  37. Déportes, I., J. L. Benoit-Guyed & D. Zmirou. 1995. Hazard to man and the environment posed by the use of urban waste compost: a review. The Science of the Total Environment 172: 197–222.PubMedCrossRefGoogle Scholar
  38. DesBordes, C. K. & J. G. Welch. 1984. Influence of specific gravity on rumination and passage of indigestible particles. Journal of Animal Science 59: 470–475.Google Scholar
  39. Deublein, D. & A. Steinhauser. 2011. Biogas from waste and renewable resources. An introduction, ed. 2nd. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Google Scholar
  40. D’hondt, B. & M. Hoffmann. 2011. A reassessment of the role of simple seed traits in mortality following herbivore ingestion. Plant Biology 13: 118–124.PubMedCrossRefGoogle Scholar
  41. Dorado, J., C. Fernández-Quintanilla & A. C. Grundy. 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science 57: 155–162.CrossRefGoogle Scholar
  42. Dumontet, S., H. Dinel & S. B. Baloda. 1999. Pathogen reduction in sewage sludge by composting and other biological treatments: A review. Biological Agriculture and Horticulture 16: 409–430.CrossRefGoogle Scholar
  43. Economou, G., G. Mavrogiannopoulos & E. A. Paspatis. 1998. Weed seed responsiveness to thermal degree hours under laboratory conditions and soil solarization in greenhouse. Pp 246–263. In: J. J. Stapleton, J. E. DeVay, & C. L. Elmore (eds). Soil solarization and integrated management of soilborne pests. Food Agriculture Organization of the United Nations, Rome.Google Scholar
  44. Edwards, A. R. & A. Younger. 2006. The dispersal of traditionally managed hay meadow plants via farmyard manure application. Seed Science Research 16: 137–147.CrossRefGoogle Scholar
  45. Egley, G. H. 1990. High-temperature effects on germination and survival of weed seeds in soil. Weed Science 38: 429–435.Google Scholar
  46. Ehle, F. R. & M. D. Stern. 1986. Influence of particle size and density on particulate passage through alimentary tract of Holstein heifers. Journal of Dairy Science 69: 564–568.CrossRefGoogle Scholar
  47. Einhorn, G. & J. Brandau. 2006. Beeinflussung der Samen von Unkräutern und Kulturpflanzen durch Mikroorganismen? Journal of Plant Diseases and Protection, Sonderheft XX: 317–324. in German.Google Scholar
  48. Ellis, R. H. & E. H. Roberts. 1980. Improved equations for the prediction of seed longevity. Annals of Botany 45: 13–30.Google Scholar
  49. Elmore, C. L. 1991. Use of solarization for weed control. In: J. J. Stapleton, J. E. DeVay & C. L. Elmore (eds), Soil solarization. Proceedings of the First International Conference on soil solarization Amman, Jordan, 19-25 February 1990. Rome, FAO Plant production and protection paper 109. http://www.fao.org/docrep/T0455E/T0455E0c.htm. (last accessed 1 November 2011).
  50. Engeli, H., W. Eidelmann, J. Fuchs & K. Rottermann. 1993. Survival of plant pathogens and weed seeds during anaerobic digestion. Water Science and Technology 27: 69–76.Google Scholar
  51. European parliament and the council. 2002. Animal by-products not intended for human consumption. Regulation (EC) No 1774/2002). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:273:0001:0095:EN:PDF. (last accessed 1 November 2011).
  52. Frączek, J., T. Hebda, Z. Ślipek & S. Kurpaska. 2005. Effect of seed coat thickness on seed hardness. Canadian Biosystems Engineering 47: 4.1–4.5.Google Scholar
  53. Fredrickson, E. L., R. E. Estell, K. M. Havstad, T. Ksiksi, J. van Tol & M. D. Remmenga. 1997. Effects of ruminant digestion on germination of Lehmann love-grass seed. Journal of Range Management 50: 20–26.CrossRefGoogle Scholar
  54. Gardarin, A., C. Dürr, M. R. Mannino, H. Busset & N. Colbach. 2010. Seed mortality in the soil is related to seed coat thickness. Seed Science Research 20: 243–256.CrossRefGoogle Scholar
  55. Gardener, C. J., J. G. McIvor & A. Jansen. 1993a. Passage of legume and grass seeds through the digestive tract of cattle and their survival in faeces. Journal of Applied Ecology 30: 63–74.CrossRefGoogle Scholar
  56. ———, J. G. McIvor & A. Jansen. 1993b. Survival of seeds of tropical grassland species subjected to bovine digestion. Journal of Applied Ecology 30: 75–85.CrossRefGoogle Scholar
  57. Geneve, R. L., M. Dutt & A. B. Downie. 2007. Development of a sequential digital imaging system for evaluating seed germination. Pp 315–323. In: S. W. Adkins, S. E. Ashmore, & S. C. Navie (eds). Seeds: Biology, development and ecology. CABI Publishing, Wallingford.Google Scholar
  58. Glendening, G. E. & H. A. Paulsen. 1950. Recovery and viability of mesquite seeds fed to sheep receiving 2,4-D in drinking water. Botanical Gazette 111: 486–491.CrossRefGoogle Scholar
  59. Gökbulak, F. 2002. Effect of American bison (Bison bison L.) on the recovery and germinability of seeds of range forage species. Grass and Forage Science 57: 395–400.CrossRefGoogle Scholar
  60. Graven, P., C. G. de Koster, J. J. Boon & F. Bouman. 1996. Structure and macromolecular composition of the seed coat of the Musaceae. Annals of Botany 77: 105–122.CrossRefGoogle Scholar
  61. Haas, B., R. Ahl, R. Bohm & D. Strauch. 1995. Inactivation of viruses in liquid manure. Revue Scientifique et Technique- Office international des epizooties 14: 435–445.Google Scholar
  62. Halloin, J. M. 1975. Postharvest infection of cottonseed by Rhizopus arrhizus, Aspergillus niger and Aspergillus flavus. Phytopathology 65: 1229–1232.CrossRefGoogle Scholar
  63. ——— 1983. Deterioration resistance mechanisms in seeds. Phytopathology 73: 335–339.CrossRefGoogle Scholar
  64. Hansen, S. & J. Hansen. 1983. Overlevelsesevnen hos forskellige frø under anaerobe betingelser (biogasanlæg) STUB rapport No.12. Teknologisk Institute, Denmark. in Danish.Google Scholar
  65. Hansen, M. N., T. Birkmose, B. Mortensen & K. Skaaning. 2004. Miljøeffekter af bioforgasning og separering af gylle. Grøn Viden, Markbrug, No. 296 (in Danish).Google Scholar
  66. Hogan, J. P. & C. J. C. Phillips. 2011. Transmission of weed seed by livestock: a review. Animal Production Science 51: 391–398.CrossRefGoogle Scholar
  67. Harker, K. N., K. J. Kirkland, V. S. Baron & G. W. Clayton. 2003. Early-harvest barley (Hordeum vulgare) silage reduces wild oat (Avena fatua) densities under zero tillage. Weed Technology 17: 102–110.CrossRefGoogle Scholar
  68. Hofrichter, M. 2002. Review: Lignin conversion by manganese peroxidise (MnP). Enzyme and Microbial Technology 30: 454–466.CrossRefGoogle Scholar
  69. Horowitz, M. & R. B. Taylorson. 1983. Effect of high temperatures on imbibition, germination, and thermal death of velvetleaf (Abutilon theophrasti) seeds. Canadian Journal of Botany 61: 2269–2276.CrossRefGoogle Scholar
  70. ———, & R. B. Taylorson . 1984. Hardseededness and germinability of velvetleaf (Abutilon theophrasti) as affected by temperature and moisture. Weed Science 32: 111–115.Google Scholar
  71. Ibrahim, A. E. & E. H. Roberts. 1983. Viability of lettuce seeds. I. Survival in hermetic storage. Journal of Experimental Botany 34: 620–630.CrossRefGoogle Scholar
  72. ———, E. H. Roberts, A. J. Murdoch. 1983. Viability of lettuce seeds. II. Survival and oxygen uptake in osmotically controlled storage. Journal of Experimental Botany 34: 631–640.CrossRefGoogle Scholar
  73. Jackson, M. G. 1977. Review article: The alkali treatment of straws. Animal Feed Science and Technology 2: 105–130.CrossRefGoogle Scholar
  74. Janzen, D. H. 1981. Enterolobium cyclocarpum seed passage rate and survival in horses, Costa Rican pleistocene seed dispersal agents. Ecology 62: 593–601.CrossRefGoogle Scholar
  75. ——— 1984. Dispersal of small seeds by big herbivores: Foliage is the fruit. The American Naturalist 123: 338–353.CrossRefGoogle Scholar
  76. Jeyanayagam, S. S. & E. R. Collins. 1984. Weed seed survival in a dairy manure anaerobic digester. Transactions of the American Society of Agricultural Engineers 27: 1518–1523.Google Scholar
  77. Jin, W., Y. F. Cheng, S. Y. Mao & W. Y. Zhu. 2011. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource Technology 102: 7925–7931.PubMedCrossRefGoogle Scholar
  78. Kaske, M. & W. van Engelhardt. 1990. The effect of size and density on mean retention time of particles in the gastrointestinal tract of sheep. British Journal of Nutrition 63: 457–465.PubMedCrossRefGoogle Scholar
  79. Katovich, E. J. S., R. L. Becker & J. Doll. 2004. Weed seed survival in anaerobic digesters. The Minnesota Project. http://www.mnproject.org/pdf/Weed%20Seed%20long%20-%20web%20cx.pdf. (last accessed 1 November 2011).
  80. Kearney, T. E., M. J. Larkin & P. N. Levett. 1993. The effect of slurry storage and anaerobic digestion on survival of pathogenic bacteria. Journal of Applied Bacteriology 74: 86–93.PubMedCrossRefGoogle Scholar
  81. Kennedy, A. C. 1999. Bacterial diversity in agroecosystems. Agriculture, Ecosystems and Environment 74: 65–76.CrossRefGoogle Scholar
  82. Kennedy, R. A., C. H. Spencer, D. Vander Zee & M. E. Rumpho. 1980. Germination and seedling growth under anaerobic conditions in Echinochloa crus-galli (barnyard grass). Plant, Cell & Environment 3: 243–248.Google Scholar
  83. Kranner, I. & L. Colville. 2011. Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany 72: 93–105.CrossRefGoogle Scholar
  84. Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecological Applications 3: 42–52.CrossRefGoogle Scholar
  85. Langenkamp, H., P. Part, W. Erhardt & A. Prüeß. 2001. Organic contaminants in sewage sludge for agricultural use. European Commission Joint Research Centre Institute for Environment and Sustainability Soil and Waste Unit. http://ec.europa.eu/environment/waste/sludge/pdf/organics_in_sludge.pdf (last accessed 29 October 2011).
  86. Lehner, A., N. Mamadou, P. Poels, D. Côme, C. Bailly & F. Corbineau. 2008. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. Journal of Cereal Science 47: 555–565.CrossRefGoogle Scholar
  87. Leonhardt, C., M. Weinhappel, M. Gansberger, A. Brandstetter, H. Schally & E. Pfundtner. 2010. Untersuchungen zur Verbreitungsgefahr von samenübertragbaren Krankheiten, Unkräutern und austriebsfähigen Pflanzenteilen mit Fermentationsendprodukten aus Biogasanlagen. Endbericht zum Forschungsprojekt 100296/2. http://www.ages.at/uploads/media/100296_Endbericht_biogas_dafne_letztfassung.pdf (last accessed 1 November 2011) (in German).
  88. Leopold, A. C. 1983. Volumetric components of seed imbibition. Plant Physiology 73: 677–680.PubMedCrossRefGoogle Scholar
  89. Lewis, J. C. 1956. The estimation of decimal reduction times. Applied Microbioogy 4: 211–221. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1057203/pdf/applmicro00306-0057.pdf (last accessed 1 November 2011).Google Scholar
  90. Lorenz, H., K. H. Hellwand & H. Buchenauer. 2001. Untersuchungen zur Inaktivierung von Indikatororganismen (Phytohygiene) in anaeroben Kofermentationsanlagen. In: A. Knie, R. Haumacher, W. Phillips, W. Martens & R. Böhm (eds), Untersuchungen zur Seuchen- und Phytohygiene in Anaerobanlagen (Halb- bzw. großtechnische Anlagen). Pp. 1-76. Förderkennzeichen: PUGU 98009. Forschungsbericht FZKA-BWPLUS. http://bwplus.fzk.de/berichte/SBer/PUGU98009SBer.pdf (last accessed 29 October 2011) (in German).
  91. Lukehurst, C. T., P. Frost & T. Al Seadi. 2010. IEA Bioenergy – Task 37. Utilisation of digestate from biogas plants as biofertiliser. http://www.iea-biogas.net/download/Digestate_Brochure_Revised_12-2010.pdf. (last accessed 29 October 2011).
  92. Lund, B., V. F. Jensen, P. Have & B. Ahring. 1996. Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors. Antonie Van Leeuwenhoek 69: 25–31.PubMedCrossRefGoogle Scholar
  93. Ma, F., E. Cholewa, T. Mohamed, C. A. Peterson & M. Gijzen. 2004. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany 94: 213–228.PubMedCrossRefGoogle Scholar
  94. Marowski, R. M. D. & L. N. Morrison. 1989. The biology of Canadian weeds. 91. Malva pusilla Sm. (= M. rotundifolia L.). Canadian Journal of Plant Sciences 69: 861–879.CrossRefGoogle Scholar
  95. Marchaim U., D. Kostenberg & E. Epstein. 1997. Auxins and phenols in anaerobic thermophilic digestion of coffee wastes and their synergistic effect in horticulture. European-Environmental-Research-Organization (EERO). Proceedings workshop on methanogenesis in sustainable environmental protection. St Petersburg, Russia, June 18-21, 1996.Google Scholar
  96. Marcinisyn, E., M. Peitzmeier & J. Heckmann. 2004. Überprüfungen der phyto- und seuchenhygienischen Unbedenklichkeit von Vergärungsrückständen aus der Behandlung von Bioabfällen. TV 3 – Praxisuntersuchungen. Abschlussbericht. FuE-Vorhaben FKZ 200 33 331, BMVEL (in German).Google Scholar
  97. Martens, W. & R. Böhm. 2001. Public health aspects connected to the use of sludge on land. Proceedings Euro-Case workshop ‘Wastewater sludge as a challenge’ Vienna, 25 June 2001. Austrian Academy of Sciences. http://www.euro-case.org/publications/water/Martens.pdf. (last accessed 1 November 2011).
  98. McGrath, S. P. 1999. Persistent organic pollutants and metals from sewage sludges; their effects on soil, plants and the food chain. Proceedings of the Workshop on “Problems around sludge”, 18-19 November 1999, Stresa (Italy). Session 2. http://ec.europa.eu/environment/waste/sludge/pdf/workshoppart3.pdf (last accessed 29 October 2011).
  99. Mehrtens, J., M. Schulte & K. Hurle. 2005. Unkrautflora in Mais, Ergebnisse eines Monitorings in Deutschland. Gesunde Pflanzen 57: 206–218 (in German).CrossRefGoogle Scholar
  100. Meisert, A. 2002. Physical dormancy in Geraniaceae seeds. Seed Science Research 12: 121–128.CrossRefGoogle Scholar
  101. Mertens, S. K. 1998. Weed communities on six ecological farms in Flevoland. MSc Thesis. Wageningen Agricultural University, Wageningen, The Netherlands.Google Scholar
  102. Michael, P. J., K. J. Steadman, J. A. Plummer & P. Vercoe. 2006. Sheep rumen digestion and transmission of weedy Malva parviflora seeds. Australian Journal of Experimental Agriculture 46: 1251–1256.CrossRefGoogle Scholar
  103. Mohamed-Yasseen, Y., S. A. Barringer, W. E. Splittstoesser & S. Costanza. 1994. The role of seed coats in seed viability. The Botanical Review 60: 426–439.CrossRefGoogle Scholar
  104. Moïse, J. A., S. Han, L. Guddynaitę-Savitch, D. A. Johnson & B. L. A. Miki. 2005. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cellular & Developmental Biology. Plant 41: 620–644.CrossRefGoogle Scholar
  105. Monteith, H. D. & J. P. Stephenson. 1981. Mixing efficiencies in full-scale anaerobic digesters by tracer methods. Journal of the Water Pollution Control Federation 53: 78–84.Google Scholar
  106. Mouissie, A. M., C. E. J. van der Veen, G. F. Veen & R. van Diggelen. 2005. Ecological correlates of seed survival after ingestion by Fallow Deer. Functional Ecology 19: 284–290.CrossRefGoogle Scholar
  107. Mt. Pleasant, J. & K. J. Schlather. 1994. Incidence of weed seed in cow (Bos sp.) manure and its importance as a weed source for cropland. Weed Technology 8: 304–310.Google Scholar
  108. Mullin, W. J. & W. Xu. 2001. Study of soybean seed coat components and their relationship to water absorption. Journal of Agricultural and Food Chemistry 49: 5331–5335.PubMedCrossRefGoogle Scholar
  109. Murdoch, A. J. & R. H. Ellis. 2000. Dormancy, viability and longevity. Pp 183–214. In: M. Fenner (ed). Seeds, the ecology of regeneration in plant communities, ed. 2nd. CABI Publishing, CAB International, Wallingford.CrossRefGoogle Scholar
  110. Nelson, E. B. 2004. Microbial dynamics and interactions in the spermosphere. Annual Revue of Phytopathology 42: 271–309.CrossRefGoogle Scholar
  111. Nishida, T., S. Kurokawa, Y. Yoshimura, O. Watanabe, S. Shibata & N. Kitahara. 2002. Effect of temperature and retention time in cattle slurry on weed seed viability. Grassland Science 48: 340–345.Google Scholar
  112. Olsen, J. E. & H. E. Larsen. 1987. Bacterial decimation times in anaerobic digestions of animal slurries. Biological Wastes 21: 153–168.CrossRefGoogle Scholar
  113. ———, H. E. Larsen & P. Nansen. 1985. Smitstofreduktion ved biogasproduktion i husdyrbruget. STUB report 20. Danish Institute of Technology, Tåstrup, Denmark (in Danish).Google Scholar
  114. Pakeman, R. J., G. Digneffe & J. L. Small. 2002. Ecological correlates of endozoochory by herbivores. Functional Ecology 16: 296–304.CrossRefGoogle Scholar
  115. Peco, B., L. Lopez-Merino & M. Alvir. 2006. Survival and germination of Mediterranean grassland species after simulated sheep ingestion: ecological correlates with seed traits. Acta Oecologica 30: 269–275.CrossRefGoogle Scholar
  116. Popat, S. C., M. V. Yates & M. A. Deshusses. 2010. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion. Water Research 44: 5965–5972.PubMedCrossRefGoogle Scholar
  117. Poppi, D. P., R. E. Hendricksen & D. J. Minson. 1985. The relative resistance to escape of leaf and stem particles from the rumen of cattle and sheep. Journal of Agricultural Science 105: 9–14.CrossRefGoogle Scholar
  118. Powell, A. A. & S. Matthews. 1981. Evaluation of controlled deterioration, a new vigour test for small seeded vegetables. Seed Science & Technology 9: 633–640.Google Scholar
  119. ———, L. J. Yule, H. C. Jing, S. P. C. Groot, R. J. Bino & H. W. Pritchard. 2000. The influence of aerated hydration seed treatment on seed longevity as assessed by the viability equations. Journal of Experimental Botany 51: 2031–2043.PubMedCrossRefGoogle Scholar
  120. Pritchard H. W. & J. B. Dickie. 2003. Predicting seed longevity: the use and abuse of seed viability equations. In: R. D. Smith, J. B. Dickie, S. H. Linington, H. W. Pritchard & R. J. Probert (eds.), Seed conservation: Turning science into practice, 35: 653-721. The Royal Botanic Gardens, Kew, UK. http://www.kew.org/ucm/groups/public/documents/document/ppcont_013799.pdf. (last accessed 1 November 2011).
  121. Rollins, D. M. & R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Applied and Environmental Microbiology 52: 531–538.PubMedGoogle Scholar
  122. Rolston, M. P. 1978. Water impermeable seed dormancy. The Botanical Review 44: 365–396.CrossRefGoogle Scholar
  123. Ryckeboer, J., S. Cops & J. Coosemans. 2002. The fate of plant pathogens and seeds during anaerobic digestion and aerobic composting of source separated household wastes. Compost Science & Utilization 10: 204–216.CrossRefGoogle Scholar
  124. Sahlström, L. 2003. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technology 87: 161–166.PubMedCrossRefGoogle Scholar
  125. Sanderson, K. 2011. A chewy problem. The inedible parts of plants are feeding the next generation of biofuels. But extracting the energy-containing molecules is a challenging task. Nature 474: 12–14.CrossRefGoogle Scholar
  126. Šarapatka, B., M. Holub & M. Lhotská. 1993. The effect of farmyard manure anaerobic treatment on weed seed viability. Biological Agriculture and Horticulture 10: 1–8.CrossRefGoogle Scholar
  127. Schrade, S., H. Oechsner, C. Pekrun & W. Claupein. 2003. Einfluss des Biogasprozesses auf die Keimfähigkeit von Samen. Landtechnik 58: 90–91 (in German).Google Scholar
  128. Simao Neto, M., R. M. Jones & D. Ratcliff. 1987. Recovery of pasture seed ingested by ruminants. 1. Seed of six tropical pasture species fed to cattle, sheep and goats. Australian Journal of Experimental Agriculture 27: 239–46.CrossRefGoogle Scholar
  129. ——— & R. M. Jones. 1987. Recovery of pasture seed ingested by ruminants. 2. Digestion of seed in sacco and in vitro. Australian Journal of Experimental Agriculture 27: 247–51.CrossRefGoogle Scholar
  130. Schnürer, A. & J. Schnürer. 2006. Fungal survival during anaerobic digestion of organic household waste. Waste Management 26: 1205–1211.PubMedCrossRefGoogle Scholar
  131. Smith, L. C., D. J. Elliot & A. James. 1993. Characterisation of mixing patterns in an anaerobic digester by means of tracer curve analysis. Ecological Modelling 69: 267–285.CrossRefGoogle Scholar
  132. van Soest, P. J. 1982. Nutritional ecology of the ruminant. Cornell University Press, Ithaca.Google Scholar
  133. ———. 1988. Effect of environment and quality of fibre on the nutritive value of crop residues. In: J. D. Reed, B.S. Capper & P. J. H. Neate (eds.), Crop residues, plant breeding and the nutritive value of crop residues. Pp. 71-96. Proceedings of a workshop, 7-10 December 1987, International Livestock Centre for Africa (ILCA), Adis Ababa, Ethiopia. http://www.fao.org/wairdocs/ILRI/x5495E/x5495e06.htm (last accessed 1 November 2011).
  134. ——— & L. H. P. Jones. 1968. Effect of silica in forages upon digestibility. Journal of Dairy Science 51: 1644–1648.CrossRefGoogle Scholar
  135. Strauß, G., T. Kaplan & T. Jacobi. 2012. Keimfähigkeit von Samen verschiedener (gentechnisch veränderter) Nutzpflanzen in Abhängigkeit von Prozessparametern und Verweildauer in einer Biogasanlage. Journal of Consumer Protection and Food Safety 7: 19–25 (in German).Google Scholar
  136. Teefy, S. M. 1996. Tracer studies in water treatment facilities: a protocol and case studies. AWWA Research Foundation and American Water Works Association, Denver.Google Scholar
  137. Thompson, A. J., N. E. Jones & A. M. Blair. 1997a. The effect of temperature on viability of imbibed weed seeds. Annals of Applied Biology 130: 123–134.CrossRefGoogle Scholar
  138. Thompson, K., J. P. Bakker & R. M. Bekker. 1997b. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge.Google Scholar
  139. Trinci, A. P. J., D. R. Davies, K. Gulli, M. I. Lawrence, B. Bonde Nielsew, A. Rickersi & M. K. Theodorou. 1994. Anaerobic fungi in herbivorous animals. Mycological Research 98: 129–152.CrossRefGoogle Scholar
  140. Turner, J., D. A. Stafford, D. E. Hughes & J. Clarkson. 1983. The reduction of three plant pathogens (Fusarium, Corynebacterium and Globodera) in anaerobic digesters. Agricultural Wastes 6: 1–11.CrossRefGoogle Scholar
  141. U.S. Environmental Protection Agency. 2003. Control of pathogens and vector attraction in sewage sludge. EPA/625/R-92/013. http://www.epa.gov/nrmrl/pubs/625r92013/625R92013.pdf. (last accessed 1 November 2011).
  142. Villiers, T. A. 1974. Seed aging: chromosome stability and extended viability of seeds stored fully imbibed. Plant Physiology 53: 875–878.PubMedCrossRefGoogle Scholar
  143. ——— & D. J. Edgcumbe. 1975. On the cause of seed deterioration in dry storage. Seed Science & Technology 3: 761–774.Google Scholar
  144. Walters, C. 1998. Understanding the mechanisms and kinetics of seed aging. Seed Science Research 8: 223–244.CrossRefGoogle Scholar
  145. Ward, R. L. 1978. Mechanism of poliovirus inactivation by ammonia. Journal of Virology 26: 299–305.PubMedGoogle Scholar
  146. Westerik, M. & R. Kleizen. 2006. Onderzoek sanitatie tijdens anaërobe vergisting ter bestrijding van onkruidzaden en ziektekiemen. HoSt Bio-energy installations BV, Hengelo. http://www.vergisting.nl/wp/wp-content/uploads/2007/11/1492rap01-rev-02-22-10-07.pdf (last accessed 1 November 2011) (in Dutch).Google Scholar
  147. Westerman, P. R. & B. Gerowitt. 2012. The probability of maize biomass contamination with weed seeds. Journal of Plant Diseases and Protection 119: 68–73.Google Scholar
  148. ———, Hildebrandt, F. & B. Gerowitt. 2012a. Weed seed survival following ensiling and mesophilic anaerobic digestion in batch reactors. Weed Research 52: 286–295.CrossRefGoogle Scholar
  149. ———,Heiermann, M., Pottberg, U., Rodemann, B. & B. Gerowitt. 2012b. Weed seed survival during mesophilic anaerobic digestion in biogas plants. Weed Research 52: 307–316.CrossRefGoogle Scholar
  150. Will, H. & O. Tackenberg. 2008. A mechanistic simulation model of seed dispersal by animals. Journal of Ecology 96: 1011–1022.CrossRefGoogle Scholar
  151. Wu, Z. & G. Roth. 2004. Considerations in managing cutting height of corn silage. Extension bulletin DAS 03-072. http://www.das.psu.edu/research-extension/dairy/nutrition/pdf/cscutheight.pdf (last accessed 1 November 2011).
  152. Yamasue, Y. 2001. Strategy of Echinochloa oryzicola Vasing. for survival in flooded rice. Weed Biology & Management 1: 28–36.CrossRefGoogle Scholar
  153. Yasue, T. & T. Hibino. 1984. Studies on the mechanism of seedcoat cracking and its prevention in soybeans. II The effect of shading and leaf cutting on the occurrence of seedcoat cracking and yield components in soybeans. Japanese Journal of Crop Science 49: 1–10 (in Japanese).Google Scholar

Copyright information

© The New York Botanical Garden 2013

Authors and Affiliations

  1. 1.Group Crop Health, Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany

Personalised recommendations