The Botanical Review

, Volume 77, Issue 4, pp 381–425 | Cite as

Species Diversity and Growth Forms in Tropical American Palm Communities

  • Henrik Balslev
  • Francis Kahn
  • Betty Millan
  • Jens-Christian Svenning
  • Thea Kristiansen
  • Finn Borchsenius
  • Dennis Pedersen
  • Wolf L. Eiserhardt


To advance our understanding of the processes that govern the assembly of palm communities and the local coexistence of numerous palm species, we here synthesize available information in the literature on species diversity and growth-form composition in palm communities across the Americas. American palm communities surveyed had 4–48 (median 16) species in study plots covering 0.09–7.2 ha. Climate, soils, hydrology, and topography are the main factors determining palm community species richness. Tropical lowland terra firme rain forests are the most species-rich whereas forests that are inundated or grow on sandy soils or in areas with seasonal climate have much fewer species. Palm communities in the central-western Amazon and in Central America are significantly richer than the average region and those in the Caribbean significantly poorer in species. As for branching, the 789 species of tropical American palms belong to Corner’s model (solitary, 268 species, 33%), Tomlinsons model (cespitose, 521 species, 66%) and Schoute’s model (dichotomous branching, three species, <1%). We assigned the species to eight different growth forms: (i) Large tall-stemmed Palms (102 spp), (ii) Large-leaved medium–short-stemmed Palms (31 spp), (iii) Medium-sized Palms (95 spp), (iv) Medium/Small Palms with Stout Stem (42 spp), (v) Small Palms (423 spp), (vi) Large acaulescent Palms (28 spp), (vii) Small acaulescent Palms (56 spp), and (viii) Climbing Palms (12 spp). The eight growth forms are differently represented in the palm communities, and the categories Small Palms and Large tall-stemmed Palms dominate the communities both in terms of species richness and in number of individuals.


Amazon Arecaceae Functional Diversity Habitat Specialization Palmae Species Richness Tropical Forest Tropical Trees 



We would like to thank our colleagues in the PALMS project for inspiring discussions and for help in the field and elsewhere. We are especially grateful to Rodrigo Bernal and Gloria Galeano who facilitated field work in Colombia, to Renato Valencia, Hugo Navarrete and Rommel Montufar for making several arrangements in Ecuador, and Cesar Grández for organizing our field work in Peru, and to Monica Moraes and Narel Paniagua for paving the way for our work in Bolivia. John Dransfield, Fred Stauffer, Andrew Henderson, Jean-Christophe Pintaud, Euridice Honorio, Gloria Galeano and Olivia Sylvester kindly read and commented on the manuscript. The PALMS project is supported by the European Commission (contract no. 212631 to Henrik Balslev) for which we are most grateful. We also acknowledge the financial support from the Danish Council for Independent Research—Natural Sciences (grant no. 10–83348 to HB). The Faculty of Science, Aarhus University supported TK’s PhD study.

Literature Cited

  1. Andersen, K. M., B. L. Turner & J. W. Dalling. 2010. Soil-based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography 37: 278–292.CrossRefGoogle Scholar
  2. Anderson, A. B. 1988. Use and management of native forests dominated by açai palm (Euterpe oleracea Mart.) in the Amazon estuary. Advances in Economic Botany 6: 144–154.Google Scholar
  3. Baez, S. & H. Balslev. 2007. Edge effects on palm diversity in rain forest fragments in western Ecuador. Biodiversity and Conservation 16: 2201–2211.CrossRefGoogle Scholar
  4. Balslev, H. & A. S. Barfod. 1987. Ecuadorian palms—an overview. Opera Botanica 92: 17–35.Google Scholar
  5. ———, J. L. Luteyn, B. Øllgaard & L. B. Holm-Nielsen. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92: 37–57.Google Scholar
  6. ———, W. L. Eiserhardt, T. Kristiansen, D. Pedersen & C. Grandez. 2010a. Palms and palm communities in the upper Ucayali river valley—a little-known region in the Amazon basin. Palms 54: 57–72.Google Scholar
  7. ———, T. R. Knudsen, A. Byg, M. Kronborg & C. Grandez. 2010b. Traditional knowledge, use, and management of Aphandra natalia (Arecaceae) in Amazonian Peru. Economic Botany 64(1): 55–67. doi: 10.1007/s12231-009-9105-4.CrossRefGoogle Scholar
  8. Bjorholm, S., J.-C. Svenning, F. Skov & H. Balslev. 2005. Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14: 423–429.CrossRefGoogle Scholar
  9. ———, ———, W. J. Baker, F. Skov & H. Balslev. 2006. Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Botanical Journal of the Linnean Society 151: 113–125.CrossRefGoogle Scholar
  10. ———, ———, F. Skov & H. Balslev. 2008. To what extent does Tobler’s 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecology 8: 11.PubMedCrossRefGoogle Scholar
  11. Blach-Overgaard, A., J.-C. Svenning & H. Balslev. 2009. Climate change sensitivity of the African ivory nut palm, Hyphaene petersiana Klotzsch ex Mart. (Arecaceae)—a keystone species in SE Africa. IOP Conference Series: Earth and Environmental Science 8:012014.Google Scholar
  12. Boll, T., J.-C. Svenning, J. Vormisto, S. Normand, C. Grandez & H. Balslev. 2005. Spatial distribution and environmental preferences of the piassaba palm Aphandra natalia (Arecaceae) along the Pastaza and Urituyacu rivers in Peru. Forest Ecology and Management 213: 175–183.CrossRefGoogle Scholar
  13. Borchsenius, F. 1997. Palm Communities in western Ecuador. Principes 41: 93–99.Google Scholar
  14. ———, & M. Moraes. 2006. Diversidad y usos de palmeras andinas (Arecaceae). Pp 412–433. In: M. Moraes, B. Øllgaard, L. P. Kvist, F. Borchsenius, & H. Balslev (eds). Botánica Económica de Los Andes Centrales. Universidad Mayor de San Andrés, La Paz.Google Scholar
  15. ———, H. Borgtoft Pedersen & H. Balslev. 1998. Manual of the Palms of Ecuador. Aarhus University Press, Aarhus.Google Scholar
  16. Borgtoft Pedersen, H. & H. Balslev. 1990. Ecuadorean Palms for Agroforestry. Aarhus University Press, Aarhus.Google Scholar
  17. Byg, A. & H. Balslev. 2006. Palms in indigenous and settler communities in southeastern Ecuador: Farmers’ perceptions and cultivation practices. Agroforestry Systems 67: 147–158.CrossRefGoogle Scholar
  18. ———, J. Vormisto & H. Balslev. 2006. Using the useful: characteristics of used palms in south-eastern Ecuador. Environment, Development and Sustainability 8: 495–506.CrossRefGoogle Scholar
  19. ———, ——— & ———. 2007. Influence of diversity and road access on palm extraction at landscape scale in SE Ecuador. Biodiversity and Conservation 16: 631–642.CrossRefGoogle Scholar
  20. Chazdon, R. L. 1986a. Light variation and carbon gain in rain forest understory palms. Journal of Ecology 74: 995–1012.CrossRefGoogle Scholar
  21. ———. 1986b. Physiological and morphological basis of shade tolerance in rain forest understory palms. Principes 30: 92–99.Google Scholar
  22. Cintra, R., A. De Carvalho Ximenes, F. R. Gondim & M. S. Kropf. 2005. Forest spatial heterogeneity and palm richness, abundance and community composition in terra firme forest, central Amazon. Revista Brasileira de Botânica 28: 75–84.CrossRefGoogle Scholar
  23. Clark, D. A., D. B. Clark, R. Sandoval & M. V. Castro. 1995. Edaphic and human effects on landscape-scale distributions of tropical rain-forest palms. Ecology 76: 2581–2594.CrossRefGoogle Scholar
  24. Corner, E. J. H. 1966. The Natural History of Palms. Weidenfeld and Nicolson, London.Google Scholar
  25. Correa-Gómez, D. F. & O. Vargas-Ríos. 2009. Regeneration of palms in native forests and plantations at Otún—Quimbaya Fauna and Flora Sanctuary (Risaralda, Colombia). Caldasia 31: 195–212.Google Scholar
  26. Costa, F. R. C., J. L. Guillaumet, A. P. Lima & O. S. Pereira. 2009. Gradients within gradients: The mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science 20: 69–78.CrossRefGoogle Scholar
  27. De Castilho, C. V. 1998. Regeneração da comunidade de palmeiras após corte e queima da vegetação original. Manaus, INPA,
  28. ———, F. Nogueira de Sá, R. J. Sawaya, R. Hartung Toppa & S. Pacheco. 1998. Estimativa de riqueza de palmeiras em áreas de baixio e platô na Reserva do km 41, Amazônia Central, AM. Manaus, INPA,
  29. ———, M. Smith & J. Tucker. 1998. Distribuição de palmeiras em trés níveis topográficos de uma floresta de terra firme na Amazônia Central. Manaus, INPA,
  30. De Castro, A. 1993. Extractive exploitation of the açaí near Manaus, Amazonia. Pp 779–782. In: C. M. H. Hladik, O. F. Linares, H. Pagezy, A. Semple, & M. Hadley (eds). Tropical forests, people and food: Biocultural interactions and applications to development. Parthenon Publ Group, Paris.Google Scholar
  31. De Granville, J.-J. 1977. Notes biologiques sur quelques palmiers guyanais. Cahiers ORSTOM, série Biologie 7: 347–353.Google Scholar
  32. ———. 1992. Life forms and growth strategies of Guianan palms as related to their ecology. Bulletin de l'Institut Français d'Etudes Andines 21: 533–548.Google Scholar
  33. De la Torre, A., D. M. Vianna, J. Ricetti, J. Silva de Souza & L. F. de Assis Montag. 2003. Riqueza, composição e diversidade de palmeiras (Arecaceae) relacionadas à variação topográfica em floresta de terra-firme na região de Manaus, AM. Manaus, INPA,
  34. De la Torre, L., L. M. Calvo-Irabien, C. Salazar, H. Balslev & F. Borchsenius. 2009. Contrasting palm species and use diversity in the Yucatan Peninsula and the Ecuadorian Amazon. Biodiversity and Conservation 18: 2837–2853.CrossRefGoogle Scholar
  35. De Sousa, T. E. L. 2007. Distribução de palmeiras (Arecaceae) a longo de gradientes ambientais no baixo interflúvio Purus-Madeira, Brasil, MSc, INPA/UFAM, Manaus.Google Scholar
  36. Dransfield, J. 1978. Growth forms of rain forest palms. Pp 247–268. In: P. B. Tomlinson & M. H. Zimmermann (eds). Tropical Trees as Living Systems. Cambridge University Press, Cambridge.Google Scholar
  37. ———, M. Rakotoarinivo, W. J. Baker, R. P. Bayton, J. B. Fisher, J. W. Horn, B. Leroy & X. Metz. 2008a. A new coryphoid palm genus from Madagascar. Botanical Journal of the Linnean Society 156: 79–91.CrossRefGoogle Scholar
  38. ———, N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley & C. E. Lewis. 2008b. Genera Palmarum. Royal Botanic Gardens Kew, Richmond.Google Scholar
  39. Duke, N. C. 1991. Nypa in the mangroves of Central America: introduced or relict? Principes 35: 127–132.Google Scholar
  40. Eiserhardt, W. L., J.-C. Svenning, W. D. Kissling & H. Balslev. 2011. Geographic ecology of the palms (Arecaceae)—determinants of diversity and distributions across spatial scales. Annals of Botany. doi: 10.1093/aob/mcr146.
  41. Ellison, A. M. 2002. Macroecology of mangroves: large-scale patterns and processes in tropical coastal forests. TREE 16: 181–194.CrossRefGoogle Scholar
  42. FAO. 1998. Non wood forest products. Tropical palms,
  43. Fisher, J. B. & S. Zona. 2006. Unusual branching in Manicaria. Palms 50: 90–102.Google Scholar
  44. Fisher, R. A., A. S. Corbet & C. B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12: 42–58.CrossRefGoogle Scholar
  45. Galeano, G. 1992. Patrones de distribución de la palmas de Colombia. Bull. Inst. Fr. Ét. And. 21: 599–607.Google Scholar
  46. ———, & R. Bernal. 2010. Palmas de Colombia. Univ. Nac. De Colombia, Bogota.Google Scholar
  47. Gasc, J. P. 1986. Le peuplement herpétologique d’Astrocaryum paramaca (Arecaceae), un palmier important dans la structure de la forêt en Guyane française. Mém. Mus. Nat. Hist. Nat. 132: 97–107.Google Scholar
  48. Gee, C. T. 2001. The mangrove palm Nypa in the geologic past of the New World. Wetlands Ecology and Management 9: 181–203.CrossRefGoogle Scholar
  49. Glemin, S. & T. Bataillon. 2009. A comparative view of the evolution of grasses under domestication. New Phytologist 183: 273–290.PubMedCrossRefGoogle Scholar
  50. Gómez-Navarro, C., C. Jaramillo, F. Herrera, S. L. Wing & R. Callejas. 2009. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany 96: 1300–1312.PubMedCrossRefGoogle Scholar
  51. González Boscán, V. C. 1987. Los morichales de los llanos orientales. Un enfoque ecológico. Caracas, Ed. Corpoven.Google Scholar
  52. González Rivadeneyra, M. 1971. Estudio sobre la densidad de población de aguaje (Mauritia sp.) en Tingo María. Revista Forestal del Peru 5: 46–54.Google Scholar
  53. Govaerts, R. & J. Dransfield. 2005. World Checklist of Palms. Richmond, Royal Botanic Gardens Kew.Google Scholar
  54. Guisan, A. & N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  55. Hallé, F., R. A. A. Oldeman & P. B. Tomlinson. 1978. Tropical Trees and Forests: An Architectural Analysis. Springer, Berlin.CrossRefGoogle Scholar
  56. Henderson, A. 1995. The Palms of the Amazon. Oxford University Press, New York.Google Scholar
  57. ———. 2002. Evolution and Ecology of Palms. New York Botanical Garden Press, New York.Google Scholar
  58. ———, G. Galeano & R. Bernal. 1995. Field Guide to the Palms of the Americas. Princeton University Press, New Jersey.Google Scholar
  59. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  60. Johnson, D. V. 1996. Palms, their conservation and sustained utilization. Status survey and conservation action plan, IUCN/SSC Palm Specialist Group.Google Scholar
  61. Kahn, F. 1986. Life forms of Amazonian palms in relation to forest structure and dynamics. Biotropica 18: 214–218.CrossRefGoogle Scholar
  62. ———. 1987. The distribution of palms as a function of local topography in Amazonian terra-firme forests. Experientia 43: 251–259.CrossRefGoogle Scholar
  63. ———. 1988. Ecology of economically important palms in Peruvian Amazonia. Advances in Economic Botany 6: 42–49.Google Scholar
  64. ———, & A. de Castro. 1985. The palm community in a forest of central Amazonia, Brazil. Biotropica 17: 210–216.CrossRefGoogle Scholar
  65. ———, & J.-J. de Granville. 1992. Palms in Forest Ecosystems of Amazonia. Springer Verlag, Berlin.CrossRefGoogle Scholar
  66. ———, & K. Mejía. 1987. Notes on the biology, ecology, and use of a small Amazonian palm: Lepidocaryum tessmannii. Principes 31: 14–19.Google Scholar
  67. ———, & ———. 1990. The palm communities in wetland forest ecosystems of Peruvian Amazonia. Forest Ecology and Management 33(34): 169–179.CrossRefGoogle Scholar
  68. ———, & ———. 1991. The palm communities of two terra firme forests in Peruvian Amazonia. Principes 35: 22–26.Google Scholar
  69. Kempton, R. A. & R. W. M. Wedderburn. 1978. A comparison of three measures of species diversity. Biometrics 34: 25–37.CrossRefGoogle Scholar
  70. Kessler, M. 2000. Upslope-directed mass effect in palms along an Andean elevational gradient: A cause for high diversity at mid-elevations? Biotropica 32: 756–759.CrossRefGoogle Scholar
  71. Kreft, H., J. H. Sommer & W. Barthlott. 2006. The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29: 21–30.CrossRefGoogle Scholar
  72. Kristiansen, T., J.-C. Svenning, C. Grandez, J. Salo & H. Balslev. 2009. Commonness of Amazonian palm (Arecaceae) species: Cross-scale links and potential determinants. Acta Oecologica 35: 554–562.CrossRefGoogle Scholar
  73. Kronborg, M., C. A. Grandez, E. Ferreira & H. Balslev. 2008. Aphandra natalia (Arecaceae)—a little known source of piassaba fibers from the western Amazon. Revista peruana de biología 15(suppl. 1): 103–113.Google Scholar
  74. Lieberman, D., M. Lieberman, R. Peralta & G. S. Hartshorn. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137–152.CrossRefGoogle Scholar
  75. Listabarth, C. 1999. The palms of the Surumoni area (Amazonas, Venezuela). I. Assemblage composition and survey of pollination strategies. Acta Botanica Venezuélica 22: 141–151.Google Scholar
  76. López, J. C. & R. Dirzo. 2007. Floristic diversity of sabal palmetto woodland: an endemic and endangered vegetation type from Mexico. Biodiversity and Conservation 16: 807–825.CrossRefGoogle Scholar
  77. Lorenzi, H., L. R. Noblick, F. Kahn & E. Ferreira. 2010. Flora Brasileira—Arecaceae. Instituto Plantarum, Nova Odessa.Google Scholar
  78. Losos, E. 1995. Habitat specificity of two palm species: Experimental transplantation in Amazonian successional forests. Ecology 76: 2595–2606.CrossRefGoogle Scholar
  79. Macía M. J., P. J. Armesilla, R. Cámara-Leret, N. Paniagua-Zambrana, S. Villalba, H. Balslev & M. Pardo-de-Santayana. 2011. Palm Uses in North-western South America: a Quantitative Review. The Botanical Review. doi: 10.1007/s12229-011-9086-8.
  80. Marmillod, D. 1982. Methodik und Ergebnisse von Untersuchungen über Zusammensetzung und Aufbau eines Terrassenwaldes in peruanischen Amazonien, Georg-August Univ., Göttingen.Google Scholar
  81. Medeiros-Costa, J. T. & S. Panizza. 1983. Palms of the cerrado vegetation formation of São Paulo State, Brazil. Principes 27: 118–125.Google Scholar
  82. Millennium Ecosystem Assessment. 2006. Ecosystems and Human Well-being. Our Human Planet: Summary for Decision Makers. Island, Washington.Google Scholar
  83. Miranda, I. P. A., E. M. Barbosa, A. Rabelo & F. F. Santiago. 2008. Palmas de comunidades ribereñas como recurso sustentable en la Amazonía brasileña. Revista Peruana de Biología 15(suppl. 1): 115–120.Google Scholar
  84. Montufar, R. & J. C. Pintaud. 2006. Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of the Linnean Society 151: 127–140.CrossRefGoogle Scholar
  85. Moraes, M. 2004. Flora de Palmeras de Bolivia. Universidad Mayor de San Andrés, La Paz.Google Scholar
  86. ———. 2007. Phytogeographical patterns of Bolivian palms. Palms 51: 177–186.Google Scholar
  87. ———, & A. Henderson. 1990. The genus Parajubaea (Palmae). Brittonia 42: 92–99.CrossRefGoogle Scholar
  88. Moussa, F. & F. Kahn. 1997. Trois palmiers pour trois capitales amazoniennes. Bulletin de l'Institut Français d'Etudes Andines 26: 1–9.Google Scholar
  89. Munari, D. P. 2005. A diversidade de palmeiras (Arecaceae) da Amazônia Central será preservada através das Áreas de Proteção Permanente associadas aos igarapés? Manaus, INPA,
  90. Normand, S., J. Vormisto, J.-C. Svenning, C. Grandez & H. Balslev. 2006. Geographical and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru. Plant Ecology 186: 161–176.CrossRefGoogle Scholar
  91. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner. 2010. Vegan. Community ecology package,
  92. Oldeman, R. A. A. 1969. Etude des pinotières de la Guyane française. Cahiers ORSTOM, série Biologie 10: 1–18.Google Scholar
  93. Pacheco, M. A. W. 2001. Effects of flooding and herbivores on variation in recruitment of palms between habitats. Journal of Ecology 89: 358–366.CrossRefGoogle Scholar
  94. Parolin, P. 2009. Submerged in darkness: Adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany 103: 359–376.PubMedCrossRefGoogle Scholar
  95. Pearson, R. G. & T. P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361–371.CrossRefGoogle Scholar
  96. Pintaud, J.-C., G. Galeano, H. Balslev, R. Bernal, F. Borchsenius, E. Ferreira, J.-J. de Granville, K. Mejía, B. Millán, M. Moraes, L. Noblick, F. W. Stauffer & F. Kahn. 2008. Las palmeras de América del Sur: Diversidad, distribución e historia evolutiva. Revista Peruana de Biología 15(Suppl. 1): 7–29.Google Scholar
  97. Poulsen, A. D., H. Tuomisto & H. Balslev. 2006. Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica 38: 468–478.CrossRefGoogle Scholar
  98. R_Development_Core_Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  99. Ramírez-Moreno, G. & G. Galeano. 2011. Study of palm communities in two phytogeographic regions in Chocó, Colombia. Caldasia, in press.Google Scholar
  100. Rawitscher, F. & M. Rachid. 1946. Troncos subterrâneos de plantas brasileiras. Anais da Academia Brasileira de Ciências 18: 261–280.Google Scholar
  101. Ribeiro, M. B. N. 2007. Características biológicas das espécies de palmeiras podem predizer sua raridade em uma floresta de terra firme na Amazônia Central? Manaus, INPA,
  102. Ricci, J.-P. 1990. Les pinotières. Bois et Forêts des Tropiques 220: 55–63.Google Scholar
  103. Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.PubMedCrossRefGoogle Scholar
  104. Rizzini, C. T. 1963. A flora do cerrado—análise florística das savanas centrais. Pp 125–177. In: M. G. Ferri (ed). I Simpósio sobre o Cerrado. Ed. Univ. São Paulo, São Paulo.Google Scholar
  105. Rodrigues, L. F. 2004. Efeito da Heterogeneidade micro-espacial na distribução de uma comunidade de palmeiras na Amazônia central. Manaus, INPA,
  106. Ruokolainen, K. & J. Vormisto. 2000. The most widespread Amazonian palms tend to be tall and habitat generalists. Basic and Applied Ecology 1: 97–108.CrossRefGoogle Scholar
  107. Salazar, A. & J. Roessl. 1977. Estudio de la potencialidad industrial del aguaje, Proyecto ITINTEC 3102 UNA-IIA, Lima.Google Scholar
  108. Salm, R., N. V. de Salles, W. J. Alonso & C. Schuck-Paim. 2007. Cross-scale determinants of palm species distribution. Acta Amazonica 37: 17–25.CrossRefGoogle Scholar
  109. Scariot, A. 1999. Forest fragmentation effects on palm diversity in central Amazonia. Journal of Ecology 87: 66–76.CrossRefGoogle Scholar
  110. ———, A. T. Oliveira Filho & E. Lleras. 1989. Species richness, density and distribution of palms in an eastern Amazonian seasonally flooded forest. Principes 33: 172–179.Google Scholar
  111. Silvertown, J., M. E. Dodd, D. J. G. Gowing & J. O. Mountford. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400: 61–63.CrossRefGoogle Scholar
  112. Sist, P. 1989a. Demography of Astrocaryum sciophilum, an understory palm of French Guiana. Principes 33: 142–151.Google Scholar
  113. ———. 1989b. Peuplement et phénologie des palmiers en forêt Guyanaise (Piste de Saint Élie). La Terre et la Vie—Revue d'écologie 44: 113–151.Google Scholar
  114. Stauffer, F. W. 2007. Arecaceae. Pp. 225–233 In: R. Stefano, G. Aymard, O. Huber (eds.), Flora Vascular de los Llanos de Venezuela. Caracas, FUDENA, Fundación Empresas Polar, FIBV.Google Scholar
  115. Svenning, J.-C. 1998. The effect of land-use on the local distribution of palm species in an Andean rain forest fragment in northwestern Ecuador. Biodiversity and Conservation 7: 1529–1537.CrossRefGoogle Scholar
  116. ———. 1999. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology 87: 55–65.CrossRefGoogle Scholar
  117. ———. 2000. Growth strategies of clonal palms (Arecaceae) in a neotropical rainforest, Yasuní, Ecuador. Australian Journal of Botany 48: 167–178.CrossRefGoogle Scholar
  118. ———. 2001a. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). The Botanical Review 67: 1–53.CrossRefGoogle Scholar
  119. ———. 2001b. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest (Maquipucuna, Ecuador). Journal of Tropical Ecology 17: 97–113.CrossRefGoogle Scholar
  120. ———, D. A. Kinner, R. F. Stallard, B. M. J. Engelbrecht & S. J. Wright. 2004. Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85: 2526–2538.CrossRefGoogle Scholar
  121. ———, F. Borchsenius, S. Bjorholm & H. Balslev. 2008. High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography 35: 394–406.CrossRefGoogle Scholar
  122. ———, D. Harlev, M. Sørensen & H. Balslev. 2009. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador. Biodiversity and Conservation 18: 219–228.CrossRefGoogle Scholar
  123. Tomlinson, P. B. 1971. The shoot apex and its dichotomous branching in the palm. Annals of Botany 35: 865–879.Google Scholar
  124. ———. 2006. The uniqueness of palms. Botanical Journal of the Linnean Society 151: 5–14.CrossRefGoogle Scholar
  125. Urrego Giraldo, L. E. 1987. Estúdio preliminar de la fenelogía de la canangucha (Mauritia flexuosa L.f.). Colombia Amazonica 2: 57–81.Google Scholar
  126. Van der Steege, J. G. 1983. Bladproductie en Bladfytomassa van het Tropisch Regenbos van Suriname. Universiteit van Suriname, Paramaribo.Google Scholar
  127. Vormisto, J., J.-C. Svenning, P. Hall & H. Balslev. 2004a. Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. Journal of Ecology 92: 577–588.CrossRefGoogle Scholar
  128. ———, H. Tuomisto & J. Oksanen. 2004b. Palm distribution patterns in Amazonian rainforests: What is the role of topographic variation? Journal of Vegetation Science 15: 485–494.CrossRefGoogle Scholar
  129. Wang, Y. H. 2008. Palm community structure and land cover changes in the San Juan biological corridor, Costa Rica. Biotropica 40: 44–54.CrossRefGoogle Scholar
  130. Whittaker, R. J., K. J. Willis & R. Field. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.CrossRefGoogle Scholar
  131. Willis, K. J. & R. J. Whittaker. 2002. Ecology—Species diversity—Scale matters. Science 295: 1245–1248.PubMedCrossRefGoogle Scholar
  132. Zobel, M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology and Evolution 12: 266–269.PubMedCrossRefGoogle Scholar
  133. Zona, S. 1990. A monograph of Sabal. (Arecaceae: Coryphoidae). Aliso 12: 583–666.Google Scholar

Copyright information

© The New York Botanical Garden 2011

Authors and Affiliations

  • Henrik Balslev
    • 1
  • Francis Kahn
    • 2
  • Betty Millan
    • 3
  • Jens-Christian Svenning
    • 1
  • Thea Kristiansen
    • 1
  • Finn Borchsenius
    • 1
  • Dennis Pedersen
    • 1
  • Wolf L. Eiserhardt
    • 1
  1. 1.Ecoinformatics and Biodiversity Group, Department of Biological SciencesAarhus UniversityAarhus CDenmark
  2. 2.Institut de Recherche pour le Développement (IRD, UMR DIADE/DYNADIV)MontpellierFrance
  3. 3.Universidad Nacional Mayor de San MarcosLimaPeru

Personalised recommendations