The Botanical Review

, Volume 77, Issue 4, pp 370–380 | Cite as

Palm Harvest Impacts in North-Western South America

  • Henrik BalslevEmail author


Tropical forests harbor thousands of useful plants that are harvested and used in subsistence economies or traded in local, regional or international markets. The effect on the ecosystem is little known, and the forests resilience is badly understood. Palms are the most useful group of plants in tropical American forests. This paper introduces a cross-disciplinary study of the effects of harvesting palm products from the tropical forests in north-western South America. The size of the resource is estimated through palm community studies in the different forest formations that determines the number of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. Almost all palm species are used in rural communities for subsistence purposes Quantitative ethno-botanical research in different forest types have identified thousands of different ways of using palms for food, construction, tool-making, etc. Although most palms are used by the person harvesting them, many are sold on local markets as fruits, fiber, tools, construction materials etc., and a few have reached larger markets, including international markets. Palm populations are managed in various ways of which some are sustainable and others are destructive. National level mechanisms that governs extraction, trade and commercialization of palm products, are used to identify positive and negative policies in relation to resilience of ecosystems.


Arecaceae NTFP Palm management Palm trade Palm uses Ecosystem services 


Los bosques tropicales albergan miles de plantas útiles usadas en economías de subsistencia o comercializadas en mercados locales, regionales e internacionales. El efecto de la cosecha de estos productos sobre el ecosistema y la adaptabilidad del mismo son poco conocidos. En los bosques tropicales americanos, las palmas forman el grupo de plantas con más usos. Este artículo presenta un estudio interdisciplinario de los efectos de la cosecha de productos derivados de palmas en los bosques tropicales noroccidentales de América del Sur. Se estima el tamaño del recurso a través de estudios de la comunidades de palmas para determinar el número de especies e individuos de palmas en las diferentes formaciones forestales. Se estudia la estructura genética de palmas útiles para cuantificar el impacto la cosecha en la erosión genética de sus poblaciones y para determinar si se puede cosechar sin detrimento de las mismas. Estudios etnobotánicos cuantitativos en diferentes tipos de bosques han identificado, literalmente, miles de usos diferentes de palmas como alimento, para construcción, elaboración de herramientas, etc. La mayoría de las palmas son usadas por la misma persona que las cosecha. Sin embargo, muchos productos de palmas (frutos, fibras, herramientas, y materiales para construcción) son comercializados en mercados locales y regionales. Algunos productos como el palmito y el marfil vegetal llegan a mercados nacionales y internacionales. El manejo de las poblaciones de palmas útiles varía desde manejo sostenible hasta sistemas que involucran la destrucción de la palma. Se utilizan los mecanismos legales que gobiernan la extracción y comercialización de productos derivados de palmas en los países estudiados, paraidentificar las políticas con impacto positivo o negativo sobre la adaptabilidad del ecosistema.

Palabras Clave

Palmas Productos forestales no-maderables manejo de palmas comercialización de palmas usos de palmas servicos de ecosistemas 



The hard work of the PALMS work-package coordinators and their colleagues to produce the six chapters following this introduction is greatly appreciated. I am especially grateful to Lars Peter Kvist, who worked on the original grant proposal on which this introductory chapter is based. The project Palm Harvest Impacts on Tropical Forests (PALMS) is funded by the European Communities 7th Framework Program through contract no. 213631.

Literature Cited

  1. Baez, S. & H. Balslev. 2007. Edge effects on palm diversity in rain forest fragments in western Ecuador. Biodiversity & Conservation 16: 2201–2211.CrossRefGoogle Scholar
  2. Balslev, H., C. Grández, N. Y. Paniagua Zambrana, A. L. Møller & S. Lykke Hansen. 2008. Palmas (Arecaceae) útiles en los alrededores de Iquitos, Amazonía Peruana. Revista Peruana de Biología 15(supl. 1): 121–132.Google Scholar
  3. ———, F. Kahn, B. Millan, J.-C. Svenning, T. Kristiansen, D. Pedersen & W. Eiserhardt. 2011. Species diversity and growth forms in tropical American palm communities. The Botanical Review. Accepted.Google Scholar
  4. ———, T. R. Knudsen, A. Byg, M. Kronborg & C. Grandez. 2010. Traditional knowledge, use, and management of Aphandra natalia (Arecaceae) in Amazonian Peru. Economic Botany 64: 55–67.CrossRefGoogle Scholar
  5. Bernal, R., C. Torres, N. García, C. Isaza, J. Navarro, M. I. Vallejo, G. Galeano & H. Balslev. 2011 Palm management in South America. The Botanical Review. AcceptedGoogle Scholar
  6. Bjorholm, S., J.-C. Svenning, W. J. Baker, F. Skov & H. Balslev. 2006. Historical legacies in the geographic diversity patterns of New World palm (Arecaceae) subfamilies. Botanical Journal of the Linnean Society 151: 113–125.CrossRefGoogle Scholar
  7. Bodmer, R. E., P. E. Puertas, J. E. García, D. R. Dias & C. Reyes. 1999. Game animals, palms, and people of the flooded forests: Management considerations for the Pacaya-Samiria national reserve, Peru. Advances in Economic Botany 13: 217–231.Google Scholar
  8. Boom, B. M. 1988. The Chácobo indians and their palms. Advances in Economic Botany 6: 91–97.Google Scholar
  9. Borgtoft Pedersen, H. & H. Balslev. 1992. The economic botany of Ecuadorian palms. Pp 173–191. In: M. Plotkin & L. Famolare (eds). Sustainable harvest and marketing of rain forest products. Island, Washington.Google Scholar
  10. Brokamp, G., N. Valderrama, M. Mittelbach, C. A. Grández R., A. S. Barfod & M. Weigend. 2011. Trade in palm products in north-western South America. The Botanical Review. Accepted.Google Scholar
  11. Brooks, T. M., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, A. B. Rylands, W. R. Konstant, P. Flick, J. Pilgrim, S. Oldfield, G. Magin & C. Hilton-Taylor. 2002. Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16: 909–923.CrossRefGoogle Scholar
  12. Burney, D. A. & T. F. Flannery. 2005. Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology and Evolution 20: 395–401.PubMedCrossRefGoogle Scholar
  13. Carpenter, S. R., E. M. Bennett & G. D. Peterson. 2006. Scenarios for ecosystem services: An overview. Ecology and Society 11(1): 29 [on line].Google Scholar
  14. Cincotta, R., J. Wilsnewski & R. Engelman. 2000. Human population in the biodiversity hotspots. Nature 404: 990–992.PubMedCrossRefGoogle Scholar
  15. Clement, C. R. 1999. 1492 and the loss of crop genetic resources. I. The relation between domestication and human population decline. II. Crop biogeography at contact. Economic Botany 53: 188–216.CrossRefGoogle Scholar
  16. Couvreur, T. L. P., N. Billotte, A.-M. Risterucci, C. Lara, Y. Vigouroux, B. Ludeña, J.-L. Pham & J.-C. Pintaud. 2006. Close genetic proximity between cultivated and wild Bactris gasipaes Kunth revealed by microsatellite markers in western Ecuador. Genetic Resources & Crop Evolution 53: 1361–1373.CrossRefGoogle Scholar
  17. Davies, R. G., C. D. L. Orme, V. Olson, G. H. Thomas, S. G. Ross, T. Ding, P. C. Rasmussen, A. J. Stattersfield, P. M. Bennett, T. M. Blackburn, I. P. F. Owens & K. J. Gaston. 2006. Human impacts and the global distribution of extinction risk. Proceedings of the Royal Society B 273: 2127–2133.PubMedCrossRefGoogle Scholar
  18. Ehrlich, P. R. & A. H. Ehrlich. 1992. The value of biodiversity. Ambio 21: 219–226.Google Scholar
  19. Fjeldså, J., M. D. Álvarez, J. M. Lazcano & B. León. 2005. Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region. Ambio 34: 205–211.PubMedGoogle Scholar
  20. Flores, C. F. & M. S. Ashton. 2000. Harvesting impact and economic value of Geonoma deversa, Arecaceae, an understory palm used for roof thatching in the Peruvian Amazon. Economic Botany 54: 267–277.CrossRefGoogle Scholar
  21. Folke, C. & L. Gunderson. 2006. Facing global change through social-ecological research. Ecology and Society 11(2): 43 [on line].Google Scholar
  22. _______, S. Carpenter, T. Elmqvist, L. Gunderson, C. S. Holling & B. Walker. 2002. Resilience and sustainable development: Building adaptive capacity in a World of transformations. Ambio 31: 437–440.Google Scholar
  23. Frost, P., B. Campbell, G. Medina & L. Usongo. 2006. Landscape-scale approaches for integrated natural resource management in tropical forest landscapes. Ecology and Society 11(2): 30 [on line].Google Scholar
  24. Goulding, M. 1980. Pp 280. The fishes and the forest. Explorations in Amazonian natural history. University of California Press, Berkeley.Google Scholar
  25. Hagmann, J., E. Chuma, K. Murwira, M. Connolly & P. Ficarelli. 2002. Success factors in integrated natural resource management R&D: Lessons from practise. Conservation Ecology 5(2): 29 [on line].Google Scholar
  26. Hecht, S. B., A. B. Anderson & B. May. 1988. The subsidy for nature: Shifting cultivation, successional palm forests, and rural development. Human Organization 47: 25–35.Google Scholar
  27. Holm Jensen, O. & H. Balslev. 1995. Ethnobotany of the fiber palm Astrocaryum chambira (Arecaceae) in Amazonian Ecuador. Economic Botany 49: 309–319.CrossRefGoogle Scholar
  28. Kahn, F. 1987. The distribution of palms as a function of local topography in Amazonian terra-firme forests. Experientia 43: 251–259.CrossRefGoogle Scholar
  29. ——— & J.-J. Granville. 1992. Palms in forest ecosystems of Amazonia. Springer, Berlin.CrossRefGoogle Scholar
  30. Kusters, K., R. Achdiawan, B. Belcher & M. Ruiz-Pérez. 2006. Balancing development and conservation? An assessment of livelihood and environmental outcomes of nontimber forest products trade in Asia, Africa, and Latin America. Ecology and Society 11(2): 20 [on line].Google Scholar
  31. Kvist, L. P. & G. Nebel. 2001. A review of Peruvian flood plain forests: Ecosystems, inhabitants and resource use. Forest Ecology & Management 150: 3–26.CrossRefGoogle Scholar
  32. Laurance, W. F., T. E. Lovejoy, H. L. Vasconcelos, E. M. Bruna, R. K. Didham, P. C. Stouffer, C. Gascon, R. O. Bierregaard, S. G. Laurance & E. Sampaio. 2002. Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology 16: 605–618.CrossRefGoogle Scholar
  33. Lowe, A. J., D. Boshier, M. Ward, C. F. E. Bacles & C. Navarro. 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95: 255–273.PubMedCrossRefGoogle Scholar
  34. Macía , M. J., P. J. Armesilla, R. Cámara-Leret, N. Paniagua-Zambrana, S. Villalba, H. Balslev & M. Pardo-de-Santayana. 2011. Palm uses in northwestern South America: a quantitative review. The Botanical Review. AcceptedGoogle Scholar
  35. ——— & J.-C. Svenning. 2005. Oliogarchic dominance in western Amazonian plant communities. Journal of Tropical Ecology 21: 613–626.CrossRefGoogle Scholar
  36. Millennium Ecosystem Assessment (MA). 2003. Ecosystems and their services. 2005. Ecosystems and human well-being. a. multiscale assessment. b. current state and trends. c. scenarios. d. policy responses. 2006. Ecosystems and human well-being. Our human planet: summary for decision makers. Island Press, Washington, D.C.Google Scholar
  37. Montúfar, R. 2007. Structure morphologique, génétique et écologique de Oenocarpus bataua (Arecaceae): Perspectives pour la valorisation durable d’une ressource forestière néotropicale. Thèse, Ecole Nationale Supérieure Agronomique de Montpellier.Google Scholar
  38. _________, F. Anthelme, J.-C. Pintaud & H. Balslev. 2011.. Disturbance and resilience in tropical American palm populations and communities. The Botanical Review. AcceptedGoogle Scholar
  39. ———, C. Mariac, J.-L. Pham & J.-C. Pintaud. 2007. Isolation of 23 polymorphic microsatellite loci in the Neotropical palm Oenocarpus bataua Martius (Arecaceae). Molecular Ecology Notes 7: 75–78.Google Scholar
  40. ——— & J.-C. Pintaud. 2006 Variation in species composition, abundance and microhabitat preferences among western Amazonian terra firme palm communities. Botanical Journal of the Linnean Society 151: 127–140.Google Scholar
  41. Morcote-Ríos, G. & R. Bernal. 2001. Remains of palms (Palmae) at archaeological sites in the New World: A review. The Botanical Review 67: 309–350.CrossRefGoogle Scholar
  42. Nelson, G. C., E. Bennett, A. A. Berhe, K. Cassmman, R. DeFries, T. Dietz, A. Dobermann, A. Dobson, A. Janetos, M. Levy, D. Marco, N. Nakicenovic, B. O’Neill, R. Norgaard, G. Petschel-Held, D. Ojima, P. Pingali, R. Watson & M. Zurek. 2006. Anthropogenic drivers of ecosystem change: An overview. Ecology and Society 11(2): 29 [on line].Google Scholar
  43. Normand, S., J. Voormisto, J.-C. Svenning, C. Grández & H. Balslev. 2006. Geographic and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru. Plant Ecology 186: 161–176.CrossRefGoogle Scholar
  44. Orme, C. D. L., R. G. Davies, M. Burgess, F. Eigenbrod, N. Pickup, V. A. Olson, A. J. Webster, T.-S. Ding, P. C. Rasmussen, R. S. Ridgely, A. J. Stattersfield, P. M. Bennett, T. M. Blackburn, K. J. Gaston & I. P. F. Owens. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016–1019.PubMedCrossRefGoogle Scholar
  45. Paniagua Zambrana, N. Y., A. Byg, J.-C. Svenning, M. Moraes, C. Grández & H. Balslev. 2007. Diversity of palm uses in the western Amazon. Biodiversity and Conservation 16: 2771–2787.CrossRefGoogle Scholar
  46. Peters, C. M. & E. J. Hammond. 1990. Fruits from the flooded forests of Peruvian Amazonia: Yield estimates for natural populations of three promising species. Advances in Economic Botany 8: 159–176.Google Scholar
  47. Roosevelt, A. C. 1999. Twelve thousand years of human-environmental interaction in the Amazon floodplain. Advances in Economic Botany 13: 371–392.Google Scholar
  48. Shone, B. M. & J. L. Caviglia-Harris. 2006. Quantifying and comparing the value of non-timber forest products in the Amazon. Ecological Economics 58: 249–267.CrossRefGoogle Scholar
  49. Sosnowska, J. & H. Balslev. 2009. American palm-ethnomedicine: A meta-analysis. Journal of Ethnobiology and Ethnomedicine 5: 43.PubMedCrossRefGoogle Scholar
  50. Tilman, D., J. Fargione, B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff & D. Swackhamer. 2001. Forecasting agriculturally driven global environmental change. Science 292(5515): 281–284.PubMedCrossRefGoogle Scholar
  51. Torre, L. de la, R. Valencia, C. Altamirana & H. Munk Ravnborg. 2011. Legal and administrative regulation of palms and other NTFPs in Colombia, Ecuador, Peru and Bolivia. The Botanical Review. Accepted.Google Scholar
  52. Vormisto, J., J.-C. Svenning, P. Hall & H. Balslev. 2004. Diversity and dominance in palm (Arecaceae) communities in the western Amazon basin. Journal of Ecology 92: 577–588.CrossRefGoogle Scholar
  53. Walker, B., C. S. Holling, S. R. Carpenter & A. Kinzig. 2004. Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9(2): 5 [on line].Google Scholar
  54. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein. 2002. Ecological responses to recent climatic change. Nature 416: 389–395.PubMedCrossRefGoogle Scholar
  55. Willis, K. J., L. Gillson & T. M. Brncic. 2004. How “virgin” is virgin rainforest? Science 304(5669): 402–403.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2011

Authors and Affiliations

  1. 1.Ecoinformatics & Biodiversity Group, Department of BioscienceAarhus University BuildAarhus C.Denmark

Personalised recommendations