Advertisement

The Botanical Review

, Volume 77, Issue 2, pp 109–151 | Cite as

Heteroblasty—A Review

  • Gerhard Zotz
  • Kerstin Wilhelm
  • Annette Becker
Article

Abstract

Virtually all plants show a certain degree of variation among individual metamers during ontogeny. In some cases, however, there are abrupt and substantial changes in form and function (e.g. in leaf form, leaf size, phyllotaxy, internode length, anthocyanin pigmentation, rooting ability, or wood structure). These plants were called “heteroblastic” by Karl Goebel more than a century ago, but the functional significance of this type of ontogenetic change, the evolutionary trajectories in different plant groups, even their frequency in the plant kingdom are still unresolved issues. We argue that slow progress is partly due to an on-going terminological confusion and the lack of distinction between other developmental processes such as ontogenetic drift. This review develops a conceptual framework for future scientific work, proposes a quantitative index of heteroblasty, and discusses the evidence for developmental regulation, functional significance, and evolutionary implications of heteroblasty to provide a stimulating basis for further research with this fascinating group of plants.

Keywords

Bromeliaceae Carnivorous plants Divaricate shrubs Epiphytes Evolution Hemiepiphytes Heterophylly Plant hormones Leaf development Phase change 

Zusammenfassung

Fast alle Pflanzen zeigen während der Individualentwicklung ein gewisses Maß an Variabilität einzelner Metamere. Bei manchen Arten kommt es jedoch zu einer ausgeprägten und sprunghaften Änderung in Form und Funktion (z.B. in Blattform oder -stellung, Internodienlänge, Pigmentierung, Holzstruktur, oder hinsichtlich der Fähigkeit zur Bildung von Adventivwurzeln). Obwohl diese Arten von Karl Goebel schon vor mehr als einem Jahrhundert als “heteroblastisch” beschrieben wurden, sind die funktionelle Bedeutung des Phänomens, dessen Evolution innerhalb einzelner Pflanzengruppen, wie auch die Häufigkeit im Pflanzenreich immer noch weitgehend ungeklärt. Dieser schleppende Fortschritt mag mit einem weit verbreiteten terminologischen Durcheinander und dem Fehlen einer klaren Abgrenzung von anderen Entwicklungsprozessen wie der “ontogenetischen Drift” zusammenhängen. Unser Übersichtsartikel entwickelt einen klaren konzeptionellen Rahmen, um eine Basis zu schaffen für zukünftige Forschungsarbeiten dieses faszinierenden Entwicklungsphänomens. Dazu schlagen wir einen quantitativen Index der Heteroblastie vor, skizzieren den gegenwärtigen Wissensstand der Regulierung von Entwicklungsprozessen bei Pflanzen, die bisherigen Untersuchungen zur funktionelle Bedeutung heteroblastischer Veränderungen, beleuchten aber auch die evolutionären Implikationen der Heteroblastie.

Notes

Acknowledgements

Of tremendous help in procuring the literature for this review were Herta Sauerbrey (Oldenburg, Germany) and Angel Aguirre (STRI, Panama). Financial support of the Deutsche Forschungsgemeinschaft (GZ ZO 94/4-1) for our current studies on heteroblasty in bromeliads is acknowledged. The Deutsche Forschungsgemeinschaft also funds ongoing research in AB’s laboratory (BE 2547/7-2 and/8-1). Critical comments on an earlier draft by Dirk Albach, Oldenburg, are appreciated.

Literature Cited

  1. Adams, W. W. & C. E. Martin. 1986a. Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). American Journal of Botany 73: 1207–1214.Google Scholar
  2. ——— & ———. 1986b. Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Oecologia 70: 298–304.Google Scholar
  3. Allsopp, A. 1965. Heteroblastic development in cormophytes. Pp. 1172–1221. In: Ruhland, W., (ed.) Handbuch der Pflanzenphysiologie XV/1. Springer-Verlag, Heidelberg.Google Scholar
  4. Alpert, P. & E. L. Simms. 2002. The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust? Evolutionary Ecology 16: 285–297.Google Scholar
  5. Anastasiou, E., S. Kenz, M. Gerstung, D. MacLean, J. Timmer, C. Fleck & M. Lenhard. 2007. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Developmental cell 13: 843–56.PubMedGoogle Scholar
  6. Arber, A. 1919. On heterophylly in water plants American Naturalist 53: 272–278.Google Scholar
  7. Ashby, E. 1948. Studies in the morphogenesis of leaves. 1. An essay on leaf shape. New Phytologist 47: 153–176.Google Scholar
  8. Barber, H. N. 1965. Selection in natural populations. Heredity 20: 551–572.Google Scholar
  9. Barthlott, W., S. Porembski, R. Seine & I. Theisen. 1987. The Curious World of Carnivorous Plants: A Comprehensive Guide to Their Biology and Cultivation. Portland, Oregon, Timber Press.Google Scholar
  10. Bauer, H. & U. Bauer. 1980. Photosynthesis in leaves of juvenile and adult phase of ivy (Hedera helix). Physiologia Plantarum 49: 366–372.Google Scholar
  11. Benzing, D. H. 1990. Vascular epiphytes. General biology and related biota. Cambridge, Cambridge University Press.Google Scholar
  12. ———. 2000. Bromeliaceae—Profile of an adaptive radiation. Cambridge, Cambridge University Press.Google Scholar
  13. Blein, T., A. Pulido, A. Vialette-Guiraud, K. Nikovics, H. Morin, A. Hay, I. E. Johansen, M. Tsiantis, & P. Laufs. 2008. A conserved molecular framework for compound leaf development. Science 322: 1835–1839.Google Scholar
  14. Boege, K. & R. J. Marquis. 2005. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology & Evolution 20: 441–448.Google Scholar
  15. Boland, D. J., M. I. H. Brooker, G. M. Chippendale, N. Hall, B. P. M. Hyland, R. D. Johnston, D. A. Kleinig & J. D. Turner. 1984. Forest trees of Australia. Melbourne, CSIRO.Google Scholar
  16. Bond, W. J., W. G. Lee & J. M. Craine. 2004. Plant structural defences against browsing birds: a legacy of New Zealand’s extinct moas. Oikos 104: 500–508.Google Scholar
  17. ——— & J. A. Silander. 2007. Springs and wire plants: anachronistic defences against Madagascar’s extinct elephant birds. Proceedings of the Royal Society B-Biological Sciences 274: 1985–1992.Google Scholar
  18. Borchert, R. 1965. Gibberellic acid and rejuvenation of apical meristems in Acacia melanoxylon. Naturwissenschaften 52: 65–66.Google Scholar
  19. Brennan, E. B., S. A. Weinbaum, J. A. Rosenheim & R. Karban. 2001. Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera : Psyllidae). Environmental Entomology 30: 1144–1149.Google Scholar
  20. Brodribb, T. & R. S. Hill. 1993. A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Australian Journal of Botany 41: 293–305.Google Scholar
  21. Burns, K. C. 2005. Plastic heteroblasty in beach groundsel (Senecio lautus). New Zealand Journal of Botany 43: 665–672.Google Scholar
  22. ——— & J. W. Dawson. 2009. Heteroblasty on Chatham Island: A comparison with New Zealand and New Caledonia. New Zealand Journal of Ecology 33: 156–163.Google Scholar
  23. Cameron, R. J. 1970. Light intensity and growth of Eucalyptus seedlings. 1. Ontogenetic variation in E. fastigata. Australian Journal of Botany 18: 29–43.Google Scholar
  24. Carrodus, S. K. (2009). Identification and the role of hybridisation in New Zealand Pittosporum. MSc thesis. Hamilton, New Zealand, The University of Waikato: 161 p.Google Scholar
  25. Champagne, C. E., T. E. Goliber, M. F. Wojciechowski, R. W. Mei, B. T. Townsley, K. Wang, M. M. Paz, R. Geeta & N. R. Sinha. 2007. Compound leaf development and evolution in the legumes. Plant Cell 19: 3369–78.PubMedGoogle Scholar
  26. Clearwater, M. J. & K. S. Gould. 1994. Comparative leaf development of juvenile and adult Pseudopanax crassifolius. Canadian Journal of Botany 72: 658–670.Google Scholar
  27. Cockayne, L. 1912. Observations concerning evolution, derived from ecological studies in New Zealand. Transactions of the New Zealand Institute (1911) 44: 1–50.Google Scholar
  28. Crayn, D. M., K. Winter & J. A. C. Smith. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proceedings of the National Academy of Sciences of the United States of America 101: 3703–3708.PubMedGoogle Scholar
  29. Darrow, H. E., P. Bannister, D. J. Burritt & P. E. Jameson. 2001. The frost resistance of juvenile and adult forms of some heteroblastic New Zealand plants. New Zealand Journal of Botany 39: 355–363.Google Scholar
  30. ———,———,———,———. 2002. Are juvenile forms of New Zealand heteroblastic trees more resistant to water loss than their mature counterparts? New Zealand Journal of Botany 40: 313–325.Google Scholar
  31. Datta, S. C., M. Evenari & Gutterma.Y. 1970. Heteroblasty of Aegilops ovata L. Israel Journal of Botany 19: 463–483.Google Scholar
  32. Day, J. S. 1998. Light conditions and the evolution of heteroblasty (and the divaricate form) in New Zealand. New Zealand Journal of Ecology 22: 43–54.Google Scholar
  33. ———, K. S. Gould & P. E. Jameson. 1997. Vegetative architecture of Elaeocarpus hookerianus. Transition from juvenile to adult. Annals of Botany 79: 617–624.Google Scholar
  34. Diamond, J. 1990. Biological effects of ghosts. Nature 345: 769–770.Google Scholar
  35. Diels, L. 1906. Jugendformen und Blütenreife im Pflanzenreich. Berlin, Borntraeger.Google Scholar
  36. Dinneny, J. R., R. Yadegari, R. L. Fischer, M. F. Yanofsky & D. Weigel. 2004. The role of JAGGED in shaping lateral organs. Development 131: 1101–10.PubMedGoogle Scholar
  37. Doorenbos, J. 1954. Rejuventation of Hedera helix in graft combinations. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 57: 99–102.Google Scholar
  38. Evans, G. C. 1972. The quantitative analysis of plant growth. Berkeley, CA, University of California Press.Google Scholar
  39. Evenari, M. 1963. Zur Keimungsökologie zweier Wüstenpflanzen. Mitteilungen der floristisch-soziologischen Arbeitsgemeinschaft, Neue Folge 10: 70–81.Google Scholar
  40. Fadzly, N., C. Jack, H. M. Schaefer & K. C. Burns. 2009. Ontogenetic colour changes in an insular tree species: signalling to extinct browsing birds? New Phytologist 184: 495–501.PubMedGoogle Scholar
  41. Fenner, M., Ed. (2000). Seeds. The Ecology of Regeneration in Plant Communities. Wallingford, UK, CABI Publishing.Google Scholar
  42. Frydman, V. M. & P. F. Wareing. 1973. Phase-change in Hedera helix L. 1. Gibberellin-like substances in two growth phases. Journal of Experimental Botany 24: 1131–1138.Google Scholar
  43. Gamage, H. K. & L. Jesson. 2007. Leaf heteroblasty is not an adaptation to shade: seedling anatomical and physiological responses to light. New Zealand Journal of Ecology 31: 245–254.Google Scholar
  44. Gardner, S., A. Drinnan, E. Newbigin & P. Ladiges. 2008. Leaf ontogeny and morphology in Acacia Mill. (Mimosaceae). Muelleria 26: 43–50.Google Scholar
  45. Giulini, A., J. Wang & D. Jackson. 2004. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031–4.PubMedGoogle Scholar
  46. Givnish, T. J., K. J. Sytsma, J. F. Smith & W. J. Hahn. 1994. Thorn-Like Prickles and Heterophylly in Cyanea—Adaptations to Extinct Avian Browsers on Hawaii. Proceedings of the National Academy of Sciences of the United States of America 91: 2810–2814.PubMedGoogle Scholar
  47. Godley, E. J. 1985. Paths to maturity. New Zealand Journal of Botany 23: 687–706.Google Scholar
  48. Goebel, K. 1889. Ueber die Jugendzustände der Pflanzen. Flora 72: 1–44.Google Scholar
  49. ———. 1898. Organography of plants, part 1. Oxford, Clarendon Press.Google Scholar
  50. ———. 1913. Organographie der Pflanzen. 1. Teil: Allgemeine Organographie. Jena, Gustav Fischer.Google Scholar
  51. Gould, K. S. 1993. Leaf heteroblasty in Pseudopanax crassifolius: Functional significance of leaf morphology and anatomy. Annals of Botany 71: 61–70.Google Scholar
  52. Gould, S. J. & R. C. Lewontin. 1979. The sprandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme. Proceedings of the Royal Society of London 205: 581–598.PubMedGoogle Scholar
  53. Gras, E. K., J. Read, C. T. Mach, G. D. Sanson & F. J. Clissold. 2005. Herbivore damage, resource richness and putative defences in juvenile versus adult Eucalyptus leaves. Australian Journal of Botany 53: 33–44.Google Scholar
  54. Grattapaglia, D. & M. Kirst. 2008. Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist 179: 911–29.PubMedGoogle Scholar
  55. Green, S., T. L. Green & Y. Heslop-Harrison. 1979. Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae), a new carnivorous plant genus. Botanical Journal of the Linnean Society 78: 99–116.Google Scholar
  56. Greenwood, R. M. & I. A. E. Atkinson. 1977. Evolution of divaricating plants in New Zealand in relation to moa browsing. Proceedings of the New Zealand 24: 21–33.Google Scholar
  57. Greilhuber, J. 1998. Intraspecific variation in genome size: A critical reassessment. Annals of Botany 82: 27–35.Google Scholar
  58. Greyson, R. I., D. B. Walden & W. J. Smith. 1982. Leaf and stem heteroblasty in Zea. Botanical Gazette 143: 73–78.Google Scholar
  59. Gunawardena, A. H. L. A. N., K. Sault, P. Donnelly, J. S. Greenwood & N. G. Dengler. 2005. Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta 221: 607–618.PubMedGoogle Scholar
  60. Guzman, P. & J. R. Ecker. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513–23.PubMedGoogle Scholar
  61. Hall, B. K. 2007. Keywords and concepts in evolutionary developmental biology. New Delhi, Discovery Publishing House.Google Scholar
  62. Hansen, D. 1996. Establishment and persistence characteristics in juvenile leaves and phyllodes of Acacia koa (Leguminosae) in Hawaii. International Journal of Plant Sciences 157: 123–128.Google Scholar
  63. ——— & E. Steig. 1993. Comparison of water-use efficiency and internal leaf carbon-dioxide concentration in juvenile leaves and phyllodes of Acacia koa (Leguminosae) from Hawaii, estimated by 2 methods. American Journal of Botany 80: 1121–1125.Google Scholar
  64. Hansen, I., L. Brimer & P. Molgaard. 2004. Herbivore-deterring secondary compounds in heterophyllous woody species of the Mascarene Islands. Perspectives in Plant Ecology Evolution and Systematics 6: 187–203.Google Scholar
  65. Haubrick, L. L. & S. M. Assmann. 2006. Brassinosteroids and plant function: some clues, more puzzles. PCE 29: 446–57.Google Scholar
  66. Hay, A. & M. Tsiantis. 2006. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nature genetics 38: 942–7.PubMedGoogle Scholar
  67. Hentschel, B. T. 1999. Complex life cycles in a variable environment: Predicting when the timing of metamorphosis shifts from resource dependent to developmentally fixed. American Naturalist 154: 549–558.PubMedGoogle Scholar
  68. Howell, C. J., D. Kelly & M. H. Turnbull. 2002. Moa ghosts exorcised? New Zealand’s divaricate shrubs avoid photoinhibition. Functional Ecology 16: 232–240.Google Scholar
  69. Hunter, C., M. R. Willmann, G. Wu, M. Yoshikawa, M. de la Luz Gutierrez-Nava & R. S. Poethig. 2006. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133: 2973–2981.PubMedGoogle Scholar
  70. Jackson, B. D. 1905. A Glossary of botanic Terms, with their Derivation and Accent, Duckworth & Co.Google Scholar
  71. Jaya, E., D. S. Kubien, P. E. Jameson & J. Clemens. 2010. Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiology 30: 393–403.PubMedGoogle Scholar
  72. Jones, C. S. 1995. Does shade prolong juvenile development? A morphological Analysis of Leaf Shape changes in Cucurbita argyrosperma Subsp. Sororia (Cucurbitaceae). American Journal of Botany 82: 346–359.Google Scholar
  73. ———. 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. International Journal of Plant Sciences 160: S105–S111.PubMedGoogle Scholar
  74. ———. 2001. The functional correlates of heteroblastic variation in leaves: changes in form and ecophysiology with whole plant ontogeny. Boletín de la Sociedad Argentina de Botánica 36: 171–184.Google Scholar
  75. Kaplan, D. R. 1980. Heteroblastic leaf development in Acacia—Morphological and morphogenetic implications. La Cellule 73: 135–203.Google Scholar
  76. Karban, R. & J. S. Thaler. 1999. Plant phase change and resistance to herbivory. Ecology 80: 510–517.Google Scholar
  77. Kato, M. & H. Setoguchi. 1999. An rbcL-based phylogeny and heteroblastic leaf morphology of Matoniaceae. Systematic Botany 23: 391–400.Google Scholar
  78. Keller, R. 2004. Identification of tropical woody plants in the absence of flowers: a field guide (2nd edition), Birkhäuser.Google Scholar
  79. Kerstetter, R. A. & R. S. Poethig. 1998. The specification of leaf identity during shoot development. Annual Review of Cell and Developmental Biology 14: 373–398.PubMedGoogle Scholar
  80. Kessler, B. & S. Reches. 1977. Structural and functional changes of chromosomal DNA during aging and phase change in plants. Chromosomes Today 6: 237–246.Google Scholar
  81. Krizek, B. A. 2009. Making bigger plants: key regulators of final organ size. Current opinion in plant biology 12: 17–22.PubMedGoogle Scholar
  82. Kubien, D. S., E. Jaya & J. Clemens. 2007. Differences in the structure and gas exchange physiology of juvenile and adult leaves in Metrosideros excelsa. International Journal of Plant Sciences 168: 563–570.Google Scholar
  83. Lambers, H., F. S. Chapin III & T. L. Pons. 2008. Plant Physiological Ecology. New York, Springer Verlag.Google Scholar
  84. Lecomte, J. R. & C. J. Webb. 1981. Aciphylla townsonii—a juvenile form of Aciphylla hookeri (Umbelliferae). New Zealand Journal of Botany 19: 187–191.Google Scholar
  85. Lee, D. W. 1988. Simulating forest shade to study the developmental ecology of tropical plants: Juvenile growth in three vines in India. Journal of Tropical Ecology 4: 281–292.Google Scholar
  86. ——— & J. H. Richards. 1991. Heteroblastic development in vines. Pp. 205–243. In: Putz, F. E. & H. A. Mooney, (eds.), The Biology of Vines. Cambridge University Press, Cambridge.Google Scholar
  87. Lee, B. H., R. Johnston, Y. Yang, A. Gallavotti, M. Kojima, B. A. Travencolo, F. Costa Lda, H. Sakakibara & D. Jackson. 2009. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiology 150: 205–16.PubMedGoogle Scholar
  88. Li, P. & M. O. Johnston. 2000. Heterochrony in plant evolutionary studies through the twentieth century. Botanical Review 66: 57–88.Google Scholar
  89. Li, H., J. L. Madden & B. M. Potts. 1995. Variation in volatile leaf oils of the Tasmanian Eucalyptus Species. 1. Subgenus Monocalyptus. Biochemical Systematics and Ecology 23: 299–318.Google Scholar
  90. Lin, Z., S. Zhong & D. Grierson. 2009. Recent advances in ethylene research. Journal of Experimental Botany 60: 3311–36.PubMedGoogle Scholar
  91. Lloyd, D. G. 1984. Variation strategies of plants in heterogeneous environments. Biological Journal of the Linnean Society 21: 357–385.Google Scholar
  92. Lockhart, J. C. 1979. Factors determining various forms in Cladosiphon zosterae (Phaeophyceae). American Journal of Botany 66: 836–844.Google Scholar
  93. Lord, E. 1979. Development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae)—Example of heteroblastic inflorescence development. Botanical Gazette 140: 39–50.Google Scholar
  94. McGlone, M. S. & B. D. Clarkson. 1993. Ghost stories: Moa, plant defences and evolution in New Zealand. Tuatara 32: 1–21.Google Scholar
  95. ——— & C. J. Webb. 1981. Selective forces influencing the evolution of divaricating plants. New Zealand Journal of Ecology 4: 20–28.Google Scholar
  96. McPherson, S. 2008. Glistening carnivores. Poole, Dorset, England, Redfern.Google Scholar
  97. Mizukami, Y. & R. L. Fischer. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America 97: 942–7.PubMedGoogle Scholar
  98. Müller, D. G. 1966. Untersuchungen zur Entwicklungsgeschichte der Braunalge Ectocarpus siliculosus aus Neapel. Planta 68: 57–68.Google Scholar
  99. Nath, U., B. C. Crawford, R. Carpenter & E. Coen. 2003. Genetic control of surface curvature. Science 299: 1404–7.PubMedGoogle Scholar
  100. Niklas, K. J. 1994. Plant allometry: the scaling of form and process. Chicago, Chicago University Press.Google Scholar
  101. ———. 1999. A mechanical perspective on foliage leaf form and function. New Phytologist 143: 19–31.Google Scholar
  102. Njoku, E. 1957. The effect of mineral nutrition and temperature on leaf shape in Ipomoea caerulea. New Phytologist 56: 154–171.Google Scholar
  103. Novaes, E., D. R. Drost, W. G. Farmerie, G. J. Pappas, Jr., D. Grattapaglia, R. R. Sederoff & M. Kirst. 2008. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: 312.PubMedGoogle Scholar
  104. Oberbauer, S. F. & M. Noudali. 1998. Potential carbon gain of shingle leaves in juveniles of the vine Monstera tenuis (Araceae) in Costa Rica. American Journal of Botany 85: 850–854.Google Scholar
  105. Pasquet-Kok, J., C. Creese & L. Sack. 2010. Turning over a new ‘leaf’: multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa. Plant, Cell & Environment 33: 2084–2100.Google Scholar
  106. Perrie, L. R. & L. D. Shepherd. 2009. Reconstructing the species phylogeny of Pseudopanax (Araliaceae), a genus of hybridising trees. Molecular Phylogenetics and Evolution 52: 774–783.PubMedGoogle Scholar
  107. Philipson, W. R. 1964. Habit in relation to age in New Zealand trees. The Journal of the Indian Botanical Society 42: 167–179.Google Scholar
  108. Phipps, J. B., K. R. Robertson, J. R. Rohrer & P. G. Smith. 1991. Origins and evolution of subfam. Maloideae (Rosaceae). Systematic Botany 16: 303–332.Google Scholar
  109. Pigliucci, M. 2001. Phenotypic plasticity: Beyond nature and nurture. Baltimore, MD, USA, Johns Hopkins University Press.Google Scholar
  110. Poethig, R. S. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science 250: 924–930.Google Scholar
  111. ———. 2003. Phase change and the regulation of developmental timing in plants. Science 301: 334–336.PubMedGoogle Scholar
  112. Pridgeon, A., P. J. Cribb, M. W. Chase & F. N. Rasmussen, Eds. (1999). Genera Orchidacearum. Oxford, Oxford University Press.Google Scholar
  113. Ray, T. S. 1987. Cyclic heterophylly in Syngonium (Araceae). American Journal of Botany 74: 16–26.Google Scholar
  114. ———. 1990. Metamorphosis in the Araceae. American Journal of Botany 77: 1599–1609.Google Scholar
  115. Reinhardt, D., E. R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml & C. Kuhlemeier. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–60.PubMedGoogle Scholar
  116. Rengel, D., H. San Clemente, F. Servant, N. Ladouce, E. Paux, P. Wincker, A. Couloux, P. Sivadon & J. Grima-Pettenati. 2009. A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biology 9: 36.PubMedGoogle Scholar
  117. Robbins, W. J. 1957. Gibberellic acid and the reversal of adult Hedera to a juvenile state. American Journal of Botany 44: 743–746.Google Scholar
  118. Roberts, K. 2007. Handbook of plant science, Volume 1, John Wiley & Sons.Google Scholar
  119. Rogler, C. E. & W. P. Hackett. 1975. Phase-change in Hedera helix—Stabilization of mature form with abscisic acid and growth retardants. Physiologia Plantarum 34: 148–152.Google Scholar
  120. Rudolf, V. H. W. & M. O. Rodel. 2007. Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints. Evolutionary Ecology 21: 121–142.Google Scholar
  121. Rumball, W. 1963. Wood structure in relation to heteroblastism. Phytomorphology 13: 206–214.Google Scholar
  122. Sablowski, R. 2007. Flowering and determinacy in Arabidopsis. Journal of Experimental Botany 58: 899–907.PubMedGoogle Scholar
  123. Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57: 431–49.PubMedGoogle Scholar
  124. Schaffalitzky de Muckadell, M. 1959. Investigations on aging of apical meristems in woody plants and its significance in silviculture. Det Forstlige Forsøgsvæsen i Danmark 25: 310–455.Google Scholar
  125. Schmidt, G. & G. Zotz. 2001. Ecophysiological consequences of differences in plant size—in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. Plant, Cell and Environment 24: 101–112.Google Scholar
  126. Schulz, E. 1930. Beiträge zur physiologischen und phylogenetischen Anatomie der vegetativen Organe der Bromeliaceen. Botanisches Archiv 29: 122–209.Google Scholar
  127. Strong, D. R. & T. S. Ray. 1975. Skototropism in Monstera gigantea. Science 190: 804–806.Google Scholar
  128. Teale, W. D., I. A. Paponov & K. Palme. 2006. Auxin in action: signalling, transport and the control of plant growth and development. Nature reviews. Molecular cell biology 7: 847–59.PubMedGoogle Scholar
  129. Tomlinson, P. B. 1970. Monocotyledons—towards an understanding of their morphology and anatomy. Advances in Botanical Research 3: 207–292.Google Scholar
  130. Tournier, V., S. Grat, C. Marque, W. El Kayal, R. Penchel, G. de Andrade, A. M. Boudet & C. Teulieres. 2003. An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Research 12: 403–11.PubMedGoogle Scholar
  131. Troll, W. 1939. Vergleichende Morphologie der hoeheren Pflanzen. 1: Vegetationsorgane. 2. Teil. Berlin, Borntraeger.Google Scholar
  132. Tsukaya, H. 2002. The leaf index: Heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant and Cell Physiology 43: 372–378.PubMedGoogle Scholar
  133. Valladares, F. & U. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology and Systematics 39: 237–257.Google Scholar
  134. ———, D. Sanchez-Gomez & M. A. Zavala. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103–1116.Google Scholar
  135. Werner, T., S. Koshikawa, T. M. Williams & S. B. Carroll. 2010. Generation of a novel wing colour pattern by the Wingless morphogen. Nature 464: 1143–1149.PubMedGoogle Scholar
  136. White, D. W. 2006. PEAPOD regulates lamina size and curvature in Arabidopsis. 103: 13238–43.Google Scholar
  137. Williams, J. E. & J. Woinarski. 1997. Eucalypt ecology: Individuals to Ecosystems. Cambridge, Cambridge University Press.Google Scholar
  138. Wiltshire, R. J. E., I. C. Murfet & J. B. Reid. 1994. The genetic control of heterochrony—evidence from developmental mutants of Pisum sativum L. Journal of Evolutionary Biology 7: 447–465.Google Scholar
  139. ———, B. M. Potts & J. B. Reid. 1998. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii E. tenuiramis complex. Australian Journal of Botany 46: 45–63.Google Scholar
  140. Winn, A. A. 1999. The functional significance and fitness consequences of heterophylly. International Journal of Plant Sciences 160: S113–S121.PubMedGoogle Scholar
  141. Wood, J. R., N. J. Rawlence, G. M. Rogers, J. J. Austin, T. H. Worthy & A. Cooper. 2008. Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quaternary Science Reviews 27: 2593–2602.Google Scholar
  142. Wright, S. D. & K. D. M. McConnaughay. 2002. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biology 17: 119–131.Google Scholar
  143. Yu, H. & J. T. Li. 2007. Physiological comparisons of true leaves and phyllodes in Acacia mangium seedlings. Photosynthetica 45: 312–316.Google Scholar
  144. Zotz, G. 2004. Growth and survival of the early stages of the heteroblastic bromeliad, Vriesea sanguinolenta. Ecotropica 10: 51–57.Google Scholar
  145. ——— & P. Hietz. 2001. The ecophysiology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52: 2067–2078.PubMedGoogle Scholar
  146. ——— & V. Thomas. 1999. How much water is in the tank? Model calculations for two epiphytic bromeliads. Annals of Botany 83: 183–192.Google Scholar
  147. ———, A. Enslin, W. Hartung & H. Ziegler. 2004. Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form. Plant, Cell and Environment 27: 1341–1350.Google Scholar

Copyright information

© The New York Botanical Garden 2011

Authors and Affiliations

  • Gerhard Zotz
    • 1
    • 2
  • Kerstin Wilhelm
    • 1
  • Annette Becker
    • 3
  1. 1.Institut für Biologie und Umweltwissenschaften, AG Funktionelle ÖkologieUniversität OldenburgOldenburgGermany
  2. 2.Smithsonian Tropical Research InstitutePanamaRepublic of Panama
  3. 3.Fachbereich 02, AG Evolutionäre Entwicklungsgenetik der PflanzenUniversität BremenBremenGermany

Personalised recommendations