The Botanical Review

, Volume 75, Issue 1, pp 96–109 | Cite as

The Evolution of Chromosome Arrangements in Carex (Cyperaceae)

  • Andrew L. HippEmail author
  • Paul E. Rothrock
  • Eric H. Roalson


Sedges (Carex: Cyperaceae) exhibit remarkable agmatoploid chromosome series between and within species. This chromosomal diversity is due in large part to the structure of the holocentric chromosomes: fragments that would not be heritable in organisms with monocentric chromosomes have the potential to produce viable gametes in organisms with holocentric chromosomes. The rapid rate of chromosome evolution in the genus and high species diversification rate in the order (Cyperales Hutch., sensu Dahlgren) together suggest that chromosome evolution may play an important role in the evolution of species diversity in Carex. Yet the other genera of the Cyperaceae and their sister group, the Juncaceae, do not show the degree of chromosomal variation found in Carex, despite the fact that diffuse centromeres are a synapomorphy for the entire clade. Moreover, fission and fusion apparently account for the majority of chromosome number changes in Carex, with relatively little duplication of whole chromosomes, whereas polyploidy is relatively important in the other sedge genera. In this paper, we review the cytologic and taxonomic literature on chromosome evolution in Carex and identify unanswered questions and directions for future research. In the end, an integration of biosystematic, cytogenetic, and genomic studies across the Cyperaceae will be needed to address the question of what role chromosome evolution plays in species diversification within Carex and the Cyperaceae as a whole.


Chromosome Number Chromosome Count Pollen Mother Cell Chromosome Evolution Chromosome Race 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the organizers of the Cyperaceae: Cariceae symposium at the XVII International Botanical Congress (2005)—Bruce Ford, Matthias Hendrichs, and Julian Starr—for inviting us to participate, and Wayt Thomas, Julian Starr, and Tony Reznicek for handling the manuscripts for the proceedings. Rita Hassert, Nancy Faller, and Jaime Weber of The Morton Arboretum provided substantial help in obtaining references for this paper. Library access provided through associate positions in the Botany Departments of The Field Museum and The University of Wisconsin–Madison were extremely helpful. This paper has benefited from discussions with and feedback from Clement Hamilton, Takuji Hoshino, and Richard Whitkus, as well as comments on this paper from Tony Reznicek and two anonymous reviewers.

Literature Cited

  1. Albertson, D. G. 1993. Mapping chromosome rearrangement breakpoints to the physical map of Caenorhabditis elegans by fluorescent in situ hybridization. Genetics 134: 211–219.PubMedGoogle Scholar
  2. Ayala, F. J. & M. Coluzzi. 2005. Chromosome speciation: humans, Drosophila, and mosquitoes. Proc. Natl. Acad. U.S.A. 102: 6535–6542.CrossRefGoogle Scholar
  3. Battaglia, E. & J. W. Boyes. 1955. Post-reductional meiosis: its mechanism and causes. Caryologia 8: 87–134.Google Scholar
  4. Brown, R. C. & B. E. Lemmon. 2000. The cytoskeleton and polarization during pollen development in Carex blanda (Cyperaceae). American J. Bot. 87: 1–11.CrossRefGoogle Scholar
  5. Buchwitz, B. J., K. Ahmad, L. L. Moore, M. B. Roth & S. Henikoff. 1999. A histone-H3-like protein in C. elegans. Nature (London) 401: 547–548.CrossRefGoogle Scholar
  6. Burnham, K. P., & D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.Google Scholar
  7. Butlin, R. K. 2005. Recombination and speciation. Mol. Ecol. 14: 2621–2635.PubMedCrossRefGoogle Scholar
  8. Cayouette, J. & P. M. Catling. 1992. Hybridization in the genus Carex with special reference to North America. The Botanical Review 58: 351–438.CrossRefGoogle Scholar
  9. Cayouette, J. & P. Morisset. 1985. Chromosome studies on natural hybrids between maritime species of Carex (sections Phacocystis and Cryptocarpae) in northeastern North America, and their taxonomic implications. Canadian J. Bot. 63: 1957–1982.Google Scholar
  10. ————. 1986a. Chromosome studies on the Carex salina complex (Cyperaceae, section Cryptocarpae) in northeastern North American. Cytologia 51: 817–856.Google Scholar
  11. ————. 1986b. Chromosome studies on Carex paleacea Wahl., Carex nigra (L.) Reichard, and Carex aquatilis Wahl. in northeastern North America. Cytologia 51: 857–884.Google Scholar
  12. Coyne, J. A. & H. A. Orr. 2004. Speciation. Sinauer Associates, Sunderland.Google Scholar
  13. Crins, W. J. 1990. Phylogenetic considerations below the sectional level in Carex. Can. J. Bot. 68: 1433–1440.Google Scholar
  14. Crins, W. J. & P. W. Ball. 1988. Sectional limits and phylogenetic considerations in Carex section Ceratocystis (Cyperaceae). Brittonia 40: 38–47.CrossRefGoogle Scholar
  15. Dahlgren, R., H. T. Clifford, & P. Yeo. 1985. The families of the Monocotyledons: structure, evolution, and taxonomy. Springer-Verlag, Berlin.Google Scholar
  16. Davies, E. W. 1956. Cytology, evolution and origin of the aneuploid series in the genus Carex. Hereditas 42: 349–365.CrossRefGoogle Scholar
  17. De Castro, D. 1950. Notes on two cytological problems of the genus Luzula DC. Genét. Ibér. 2: 201–209.Google Scholar
  18. Dernburg, A. F. 2001. Here, there, and everywhere: kinetochore function on holocentric chromosomes. J. Cell Biol. 153: F33–F38.PubMedCrossRefGoogle Scholar
  19. Faulkner, J. S. 1972. Chromosome studies on Carex section Acutae in north-west Europe. Bot. J. Linn. Soc. 65: 271–301.Google Scholar
  20. ————. 1973. Experimental hybridization of north-west European species in Carex section Acutae (Cyperaceae). Bot. J. Linn. Soc. 67: 233–253.CrossRefGoogle Scholar
  21. Flach, M. 1966. Diffuse centromeres in a dicotyledoneous plant. Nature (London) 209: 1369–1370.CrossRefGoogle Scholar
  22. Ford, B. A., M. Iranpour, R. F. C. Naczi, J. R. Starr & C. A. Jerome. 2006. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Syst. Bot. 31: 70–82.CrossRefGoogle Scholar
  23. Grant, V. E. 1981. Plant Speciation, Edition 2. Columbia University Press, New York.Google Scholar
  24. Greilhuber, J. 1995. Chromosomes of the monocotyledons (general aspects). Pp. 379–414 in P. J. Rudall, P. J. Cribb, D. F. Culer & C. J. Humphries (ed.), Monocotyledons: Systematics and Evolution. Royal Botanic Gardens, Kew.Google Scholar
  25. Guerra, M. & M. A. García. 2004. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47: 134–140.PubMedCrossRefGoogle Scholar
  26. Håkansson, A. 1954. Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas (Lund) 15: 325–345.Google Scholar
  27. Harmon, L. J., & J. B. Losos. 2005. The effect of intraspecific sample size on type I and type II error rates in comparative studies. Evolution 59: 2705–2710.PubMedGoogle Scholar
  28. Haskell, G. 1952. Polyploidy, ecology and the British Flora. J. Ecol. 40: 265–282.CrossRefGoogle Scholar
  29. Heilborn, O. 1924. Chromosome numbers and dimensions, species-formation and phylogeny in the genus Carex. Hereditas 5: 129–216.CrossRefGoogle Scholar
  30. ————. 1928. Chromosome studies in Cyperaceae. Hereditas 11: 182–192.CrossRefGoogle Scholar
  31. ————. 1932. Aneuploidy and polyploidy in Carex. Svensk Bot. Tidskr. 26: 137–145.Google Scholar
  32. Hey, J. 2004. What's so hot about recombination hotspots? PLoS Biology 2: e190.PubMedCrossRefGoogle Scholar
  33. Hipp, A. L. 2007. Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194.PubMedCrossRefGoogle Scholar
  34. Hipp, A. L., P. E. Rothrock & A. A. Reznicek. 2006. Phylogeny and classification of Carex section Ovales (Cyperaceae). International Journal of Plant Sciences 167: 1029–1048.CrossRefGoogle Scholar
  35. Hipp, A. L., P. E. Rothrock, A. A. Reznicek & P. E. Berry. 2007. Changes in chromosome number associated with speciation in sedges: A phylogenetic study in Carex section Ovales (Cyperaceae). In J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince and M. G. Simpson, eds. Monocots: Comparative biology and evolution (Poales). Aliso 23:193–203.Google Scholar
  36. Hoshino, T. 1981. Karyomorphological and cytogenetical studies on aneuploidy in Carex. J. Sci. HIroshima Univ., Ser. B, Div. 2, Bot. 17: 155–238.Google Scholar
  37. ————. 1992. Cytogeographical study of four aneuploids of Carex oxyandra Kudo in Japan. Bot. Mag. (Tokyo) 105: 639–648.CrossRefGoogle Scholar
  38. Hoshino, T. & T. Shimizu. 1986. Cytological studies on degenerative nuclei at pollen development of Carex ciliato-marginata. Bot. Mag. (Tokyo) 99: 185–190.CrossRefGoogle Scholar
  39. Hoshino, T. & K. Okamura. 1994. Cytological studies on meiotic configurations on intraspecific aneuploids of Carex blepharicarpa (Cyperaceae) in Japan. Journal of Plant Research 107: 1–8.CrossRefGoogle Scholar
  40. Hoshino, T. & A. Onimatsu. 1994. Cytological studies of Carex duvaliana (Cyperaceae) with special reference to meiotic configurations of intraspecific aneuploids. J. Jap. Bot. 69: 37–41.Google Scholar
  41. Hoshino, T. & M. J. Waterway. 1994. Cytogeography and meiotic chromosome configurations of six intraspecific aneuploids of Carex conica Boott (Cyperaceae) in Japan. Journal of Plant Research 107: 131–138.CrossRefGoogle Scholar
  42. Hoshino, T., K. Aosaki & A. Onimatsu. 1993. Cytological studies of Carex stenostachys (Cyperaceae) with special reference to meiotic configurations in intraspecific aneuploids. La Kromosomo II 71–72: 2451–2455.Google Scholar
  43. Hoshino, T., S. Hayashi & A. Onimatsu. 1994. Meiotic chromosome configurations of intraspecific aneuploids of Carex sikokiana (Cyperaceae) in Japan. J. Jap. Bot. 69: 142–146.Google Scholar
  44. Hoshino, T., K. Furuta & H. Hatooka. 1999. Pollen development and postreductional meiosis in Carex. Abstract, XVI International Botanical Congress.Google Scholar
  45. Huelsenbeck, J. P., R. Nielsen, & J. P. Bollback. 2003. Stochastic mapping of morphological characters. Systematic Biology 52: 131–158.PubMedCrossRefGoogle Scholar
  46. Juel, H. O. 1900. Beiträge zur Kenntnis der Tetradenteilung. Jahrb. Wiss. Bot. 35: 626–659.Google Scholar
  47. La Cour, L. F. 1952. The Luzula system analyzed by X-ray. Heredity 6: 77–81.CrossRefGoogle Scholar
  48. Leitch, I. J. & M. D. Bennett. 2004. Genomic downsizing in polyploid plants. Biol. J. Linn. Soc. 82: 651–663.CrossRefGoogle Scholar
  49. Lexer, C., M. E. Welch, J. L. Durphy & L. H. Rieseberg. 2003. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: Implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol. Ecol. 12: 1225–1235.PubMedCrossRefGoogle Scholar
  50. Löve, A. E. 1981. Chromosome number reports LXXIII. Taxon 30: 829–861.Google Scholar
  51. ————. 1982. IOPB chromosome number reports LXXV. Taxon 31: 342–368.Google Scholar
  52. Löve, A., D. Löve & M. Raymond. 1957. Cytotaxonomy of Carex section Capillares. Can. J. Bot. 35: 715–761.CrossRefGoogle Scholar
  53. Luceño, M. 1993. Chromosome studies on Carex (L.) section Mitratae Kükenth. (Cyperaceae) in the Iberian Peninsula. Cytologia 58: 321–330.Google Scholar
  54. ————. 1994. Cytotaxonomic studies in Iberian, Balearic, North African, and Macaronesian species of Carex (Cyperaceae): II. Can. J. Bot. 72: 587–596.CrossRefGoogle Scholar
  55. Luceño, M. & S. Castroviejo. 1991. Agmatoploidy in Carex laevigata (Cyperaceae): Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Pl. Syst. Evol. 177: 149–160.CrossRefGoogle Scholar
  56. ————. 1993. Cytotaxonomic studies in the sections Spirostachyae (Drejer) Bailey and Ceratocystis Dumort. of the genus Carex L. (Cyperaceae), with special reference to Iberian and North Aftrican taxa. Bot. J. Linn. Soc. 112: 335–350.Google Scholar
  57. Luceño, M., A. L. L. Vanzela & M. Guerra. 1998. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can. J. Bot. 76: 440–449.CrossRefGoogle Scholar
  58. Lutzoni, F., M. Pagel, & V. Reeb. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.PubMedCrossRefGoogle Scholar
  59. Maddox, P. S., K. Oegema, A. Desai, & I. M. Cheeseman. 2004. “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12: 641–653.PubMedCrossRefGoogle Scholar
  60. Magallon, S. A. & M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780.PubMedGoogle Scholar
  61. Malheiros-Gardé, N. & A. Gardé. 1950. Chromosome number in Luzula multiflora Lej. Genét Ibér. 4: 91–94.Google Scholar
  62. Martins, E. P., and T. F. Hansen. 1997. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into analysis of interspecific data. American Naturalist 149: 646–667.CrossRefGoogle Scholar
  63. Murphy, W. J., D. M. Larkin, A. Everts-van der Wind, G. Bourque, G. Tesler, L. Auvil, J. E. Beever, B. P. Chowdhary, F. Galibert, L. Gatzke, C. Hitte, S. N. Meyers, D. Milan, E. A. Ostrander, G. Pape, H. G. Parker, T. Raudsepp, M. B. Rogatcheva, L. B. Schook, L. C. Skow, M. Welge, J. E. Womack, S. J. O'Brien, P. A. Pevzner, & H. A. Lewin. 2005. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science (Wash. D. C.) 309: 613–617.CrossRefGoogle Scholar
  64. Naczi, R. F. C. 1992. Systematics of Carex Section Griseae (Cyperaceae). Botany. Ph.D. Dissertation, University of Michigan, Ann Arbor.Google Scholar
  65. ————. 1999. Chromosome numbers of some eastern North American species of Carex and Eleocharis (Cyperaceae). Contr. Univ. Michigan Herbarium 22: 105–119.Google Scholar
  66. Nagaki, K., K. Kashihara & M. Murata. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Pl. Cell 17: 1886–1893.CrossRefGoogle Scholar
  67. Nijalingappa, B. H. M. & D. L. Bai. 1990. Cytological studies in some South Indian species of Carex. Cytologia 55: 373–380.Google Scholar
  68. Nishikawa, K., Y. Furuta & K. Ishitobi. 1984. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy. Jap. J. Gen. 59: 465–472.CrossRefGoogle Scholar
  69. Nokkala, S., A. Laukkanen & C. Nokkala. 2002. Mitotic and meiotic chromosomes in Somatochlora metallica (Cordulidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas 136: 7–12.PubMedCrossRefGoogle Scholar
  70. Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26: 331–348.CrossRefGoogle Scholar
  71. ————. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612–622.CrossRefGoogle Scholar
  72. Pardo-Manuel de Villena, F., & C. Sapienza. 2001. Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.PubMedGoogle Scholar
  73. Pazy, B. & U. Plitmann. 1994. Holocentric chromosome behaviour in Cuscuta (Cuscutaceae). Pl. Syst. Evol. 191: 105–109.CrossRefGoogle Scholar
  74. Perez, R., J. S. Rufas, J. A. Suja, J. Page & F. Panzera. 2000. Meiosis in holocentric chromosomes: Orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosome Research 8: 17–25.PubMedCrossRefGoogle Scholar
  75. Reznicek, A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Can. J. Bot. 68: 1409–1432.Google Scholar
  76. Rieseberg, L. H. 2001. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16: 351–358.PubMedCrossRefGoogle Scholar
  77. Roalson, E. H. 2008. A synopsis of chromosome number variation in the Cyperaceae. The Botanical Review 74:209–393.CrossRefGoogle Scholar
  78. Roalson, E. H., A. G. McCubbin & R. Whitkus 2007. Chromosome evolution in the Cyperales. In J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince & M. G. Simpson (eds.), Monocots: comparative biology and evolution (Poales). Aliso 23:62–71.Google Scholar
  79. Roalson, E. H., J. T. Columbus & E. A. Friar. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: Assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst. Bot. 26: 318–341.Google Scholar
  80. Rothrock, P. E. & A. A. Reznicek. 1996. Chromosome numbers in Carex section Ovales (Cyperaceae) from Eastern North America. Sida 17: 251–258.Google Scholar
  81. ————. 1998. Chromosome numbers in Carex section Ovales (Cyperaceae): Additions, variations, and corrections. Sida 18: 587–592.Google Scholar
  82. Schmid, B. 1982. Karyology and hybridization in the Carex flava complex in Switzerland. Feddes Repert. 93: 23–59.CrossRefGoogle Scholar
  83. Sharma, A. K. & A. K. Bal. 1956. A cytological investigation of some members of the family Cyperaceae. Fyton 6: 7–22.Google Scholar
  84. Sheikh, S. A., K. Kondo & Y. Hoshi. 1995. Study of diffused centromeric nature of Drosera chromosomes. Cytologia 60: 43–47.Google Scholar
  85. Stebbins, G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York.Google Scholar
  86. Tanaka, N. 1937. Chromosome studies in Cyperaceae, I. Cytologia, Fujii Jubilee Volume: 814–821.Google Scholar
  87. ————. 1939. Chromosome studies in Cyperaceae, IV. Chromosome numbers of Carex species. Cytologia 10: 51–58.Google Scholar
  88. ————. 1940a. Chromosome studies in Cyperaceae, VI. Cytologia 10: 348–362.Google Scholar
  89. ————. 1940b. Chromosome studies in Cyperaceae, VIII: Meiosis in diploid and tetraploid forms of Carex siderosticta Hance. Cytologia 10: 282–310.Google Scholar
  90. ————. 1940c. Chromosome studies in Cyperaceae, X: Aneuploid plants of Carex multifolia Ohwi. Botanic Magazine (Tokyo) 54: 438–446.Google Scholar
  91. ————. 1941a. Chromosome studies in Cyperaceae, XI. Jap. J. Bot. 11: 213–219.Google Scholar
  92. ————. 1941b. Chromosome studies in Cyperaceae, 15. Bot. Mag. (Tokyo) 55: 218–225.Google Scholar
  93. ————. 1948. The problem of aneuploidy (Chromosome studies in Cyperaceae, with special reference to the problem of aneuploidy). Biological Contributions in Japan 4: 1–327.Google Scholar
  94. ————. 1949. Chromosome studies in the genus Carex with special reference to aneuploidy and polyploidy. Cytologia 15: 15–29.Google Scholar
  95. Tanaka, N. & N. Tanaka. 1977. Chromosome studies in Chionographis (Liliaceae). I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia 42: 754–763.Google Scholar
  96. Turner, T. L., M. W. Hahn & S. V. Nuzhdin. 2005. Genomic Islands of Speciation in Anopheles gambiae. PLoS Biology 3: e285.PubMedCrossRefGoogle Scholar
  97. Vanzela, A. L. L., M. Luceño & M. Guerra. 2000. Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot. J. Linn. Soc. 134: 557–566.CrossRefGoogle Scholar
  98. Wahl, H. A. 1940. Chromosome numbers and meiosis in the genus Carex. Am. J. Bot. 27: 458–470.CrossRefGoogle Scholar
  99. Wang, B. & A. H. Porter. 2004. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 168: 215–225.PubMedCrossRefGoogle Scholar
  100. Waterway, M. J., T. Hoshino & T. Masaki. 2008. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Review (in press).Google Scholar
  101. White, M. J. D. 1978. Modes of Speciation. W.H. Freeman & Co., New York.Google Scholar
  102. Whitkus, R. 1981. Chromosome numbers of some northern New Jersey carices. Rhodora 83: 461–464.Google Scholar
  103. ————. 1988. Experimental hybridization among chromosome races of Carex pachystachya and the related species Carex macloviana and Carex preslii (Cyperaceae). Syst. Bot. 13: 146–153.CrossRefGoogle Scholar
  104. ————. 1991. Chromosome counts of Carex section Ovales. Bot. Gaz. 152: 224–230.CrossRefGoogle Scholar
  105. Yan-Cheng, T. & X. Qiu-Yun. 1989. Cytological studies of Carex siderosticta Hance (Cyperaceae) and its importance in phytogeography. Cathaya 1: 49–60.Google Scholar
  106. Yano, O. & T. Hoshino. 2005. Molecular phylogeny and chromosomal evolution of Japanese Schoenoplectus (Cyperaceae), based on ITS and ETS 1f sequences. Acta Phytotax. Geobot. 56: 183–195.Google Scholar
  107. Yano, O., T. Katsuyama, H. Tsubota & T. Hoshino. 2004. Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. Journal of Plant Research 117: 409–419.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2008

Authors and Affiliations

  • Andrew L. Hipp
    • 1
    Email author
  • Paul E. Rothrock
    • 2
  • Eric H. Roalson
    • 3
  1. 1.The Morton ArboretumLisleUSA
  2. 2.Taylor UniversityUplandUSA
  3. 3.Washington State UniversityPullmanUSA

Personalised recommendations