The Botanical Review

, Volume 75, Issue 1, pp 110–137 | Cite as

Phylogeny and Evolution in Cariceae (Cyperaceae): Current Knowledge and Future Directions

  • Julian R. StarrEmail author
  • Bruce A. Ford


The goal of this study was to review the impact of DNA sequence analyses on our understanding of Cariceae phylogeny, classification and evolution. To explore character evolution, 105 taxa from four different studies were included in an nrDNA ITS + ETS 1f analysis of all recognized genera (Carex, Cymophyllus, Kobresia, Schoenoxiphium, Uncinia) and Carex subgenera (Carex, Psyllophora, Vignea, Vigneastra). As in previous analyses, four major Cariceae clades were recovered: (1) a “Core Carex Clade” (subg. Carex, Vigneastra, Psyllophora p.p); (2) A “Vignea Clade” (subg. Vignea, Psyllophora p.p.); (3) a “Schoenoxiphium Clade” (Schoenoxiphium, subg. Psyllophora p.p.), and (4) a “Core Unispicate Clade” (Uncinia, Kobresia, subg. Psyllophora p.p.). All studies provide strong support (86–100% BS) for the Core Carex and Vignea Clades, but only weak to moderate support (<50%–78% BS) for the Core Unispicate and Schoenoxiphium Clades. The relationships of these groups are unresolved. Studies suggest that Carex is either paraphyletic with respect to all Cariceae genera or to all genera except Schoenoxiphium. Kobresia is a grade, but Uncinia and possibly Schoenoxiphium are monophyletic. The monotypic Cymophyllus is indistinct from Carex subg. Psyllophora species. Character analyses indicate that inflorescence proliferation and reduction have occurred in all major clades, and that the Cariceae’s unisexual flowers have evolved from perfect flowers. The ancestor to Cariceae possessed a multispicate inflorescence with cladoprophylls and female spikelets with tristigmatic gynoecia and closed utricles. This morphology is most similar to extant Carex subg. Carex species, which contradicts the nearly unanimous assumption that the highly compound inflorescences of Schoenoxiphium are primitive. Since taxonomic sampling and statistical support for phylogenies have generally been poor, we advocate the temporary maintenance of the four traditional Carex subgenera with androgynous unispicate species placed within subg. Psyllophora and dioecious and gynaecandrous unispicate species distributed amongst subgenera Carex and Vignea. A collective effort focused on developing new nuclear markers, on increasing taxonomic and geographic sampling, and on studying development within the context of phylogeny, is needed to develop a phylogenetic classification of Cariceae.


Cariceae Phylogeny Classification Evolution 



The authors would like to thank Tony Reznicek for detailed discussions on Cariceae evolution and a live sample of Carex baldensis. We also thank Paul Goetghebeur for helpful discussions on inflorescence morphology and development, and two anonymous reviewers for their constructive comments.

Literature Cited

  1. Aiken, S.G., R.L. Boles & M. J. Dallwitz. 1999. Carex (Dill.) L. Cyperaceae of the Canadian Arctic Archipelago: Descriptions, Illustrations, Identification, and Information Retrieval. Version: 6th November 2000.
  2. Alvarez, I. & J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molec. Phylogenet. Evol. 29: 417–434.PubMedCrossRefGoogle Scholar
  3. Bailey, L. H. 1886. A preliminary synopsis of North American carices. Proc. Am. Acad. Arts 3: 59–157.Google Scholar
  4. Ball, P. W. 1990. Some aspects of the phytogeography of Carex. Can. J. Bot. 68: 1462–1472.Google Scholar
  5. ————, A. A. Reznicek & D. A. Murray. 2002. Cyperaceae Jussieu. Pp. 1–608 in Flora of North America Editorial Committee (ed.), Flora of North America, North of Mexico, Vol. 23. Oxford University Press, Oxford.Google Scholar
  6. Blaser, H.W. 1944. Studies in the morphology of the Cyperaceae. II. The prophyll. Am. J. Bot. 31: 53–64.CrossRefGoogle Scholar
  7. Chater, A. O. 1980. Carex. Pp. 290–323 in T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, S. M. Waters & D. A. Webb (eds.), Flora Europaea, Vol. 5. Cambridge University Press, Cambridge.Google Scholar
  8. ————. 1994. Carex. Pp. 464–473 in G. Davidse, M. Sousa. S. & A. O. Chater (eds.), Flora Mesoamericana. Vol. 6. Alismataceae a Cyperaceae. Universidad Nacional Autonoma de Mexico, Instituto Biologia, Missouri Botanical Garden, The Natural History Museum, London.Google Scholar
  9. Clarke, C. B. 1883. On Hemicarex, Benth., and its allies. J. Linn. Soc., Bot. 20: 374–403.Google Scholar
  10. Croizat, L. 1952. Manual of phytogeography or an account of plant-dispersal throughout the world. Uitgeverij Dr. W. Junk, The Hague.Google Scholar
  11. Dai, L. K. & S. Y. Liang, eds. 2000. Flora Reipublicae Popularis Sinicae: delectis florae Reipublicae Popularis Sinicae. Tomus 12. Angiospermae, Monocotyledoneae, Cyperaceae (2), Caricoideae. Science Press, Beijing.Google Scholar
  12. Dahlgren, R. M. T., H. T. Clifford & P. F. Yeo. 1985. Cyperaceae A. L. Jussieu. Pp. 407–418 in The families of the monocotyledons: structure, evolution, and taxonomy. Springer, Berlin.Google Scholar
  13. Davies, E. W. 1956. Cytology, evolution and the origin of the aneuploid series in the genus Carex. Hereditas 42:349–365.CrossRefGoogle Scholar
  14. DeBry, R. W. & R. G. Olmstead. 2000. A simulation study of reduced tree-search effort in bootstrap resampling analysis. Syst. Biol. 49: 171–179.PubMedCrossRefGoogle Scholar
  15. Edwards, A. W. F. 1972. Likelihood: an account of the statistical concept of likelihood and its application to scientific inference. Cambridge University Press, Cambridge.Google Scholar
  16. Egorova, T. V. 1999. The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St. Petersburg State Chemical-Pharmaceutical Academy, St. Petersburg; Missouri Botanical Garden Press, St. Louis, MO.Google Scholar
  17. Farris, J. S., M. Källersjö, A. G. Kluge & C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315–319.CrossRefGoogle Scholar
  18. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  19. Ford, B. A., M. Iranpour, R. F. C. Naczi, J. R. Starr & C. A. Jerome. 2006. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. Syst. Bot. 31: 70–82.CrossRefGoogle Scholar
  20. Goetghebeur, P. 1986. Genera Cyperacearum. Een bijdrage tot de kennis van de morfologie, systematiek enfylogenese van de Cyperaceae-genera. Doctoral Thesis, Rijksuniversiteit Gent.Google Scholar
  21. ————. 1998. Cyperaceae. Pp. 141–190 in K. Kubitzki (ed.), The families and genera of vascular plants IV, flowering plants—monocotyledons, Alismatanae and Commelinanae (except Gramineae). Springer, Berlin.Google Scholar
  22. Haines, R. W. & K. A. Lye. 1972. Studies in African Cyperaceae VII: panicle morphology and possible relationships in Sclerieae and Cariceae. Bot. Not. 125: 331–343.Google Scholar
  23. ———— & ————. 1983. The sedges and rushes of East Africa. East African Natural History Society, Nairobi.Google Scholar
  24. Hamlin, B. G. 1958. A new classification of Uncinia (Cyperaceae-Caricoideae). Rec. Domin. Mus. 3: 85–88.Google Scholar
  25. ————. 1959. A revision of the genus Uncinia (Cyperaceae–Caricoideae) in New Zealand. Dominion Museum Bulletin No. 19. Dominion Museum, Wellington.Google Scholar
  26. Hendrichs, M., S. Michalski, D. Begerow, F. Oberwinkler & F. H. Hellwig. 2004. Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. Pl. Syst. Evol. 246: 109–125.CrossRefGoogle Scholar
  27. Hipp, A. L. 2008. Phylogeny and patterns of convergence in Carex Sect. Ovales (Cyperaceae): evidence from ITS and 5.8S sequences. In R. F. C. Naczi and B. A. Ford (eds.), Sedges: uses, diversity, and systematics of the Cyperaceae. Monogr. Syst. Bot. Missouri Bot. Gard. 108:197–214.Google Scholar
  28. Holm, T. 1900. Studies in the Cyperaceae XIII. Carex willdenowii and its allies. Amer. J. Sci. 10: 33–47.Google Scholar
  29. Holmgren, P. K., N. H. Holmgren & L. C. Barnett. 1990. Index Herbariorum, Part I: The Herbaria of the World, 8th edn. New York Botanical Garden, New York.Google Scholar
  30. Huelsenbeck, J. P. & F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.PubMedCrossRefGoogle Scholar
  31. Jermy, A. C., A. O. Chater & R. W. David. 1982. Sedges of the British Isles. Handbook No. 1 (2nd ed.). Botanical Society of the British Isles, London.Google Scholar
  32. Jones, E., D. A. Simpson, T. R. Hodkinson, M. W. Chase & J. A. N. Parnell. 2007. The Juncaceae–Cyperaceae interface: a combined plastid sequence analysis. Aliso 23:55–61.Google Scholar
  33. Kern, J. H. 1958. Florae Malesianae precursores XXI: notes on Malaysian and some S. E. Asian Cyperaceae VII. Acta Bot. Neerl. 7: 786–800.Google Scholar
  34. ————. 1974. Cyperaceae. Flora Malesiana 7: 435–753.Google Scholar
  35. Koyama, T. 1957. Taxonomic study of Cyperaceae 7: the systematic position of Carex sect. Decorae with a taxonomic treatment of the Japanese species. Bot. Mag. (Tokyo) 70: 347–357.Google Scholar
  36. ————. 1961. Classification of the family Cyperaceae (1). J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 37–141.Google Scholar
  37. ————. 1962. Classification of the family Cyperaceae (2). J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 149–278.Google Scholar
  38. Kreczetovicz, V. I. 1936. Are the sedges of subgenus Primocarex Kük. primitive? Bot. Zhurn. S.S.S.R. 21: 395–425.Google Scholar
  39. Kükenthal, G. 1909. Cyperaceae–Caricoideae. Pp. 1–824 in A. Engler (ed.), Das Pflanzenreich, IV. 20 (Heft 38). Wilhelm Englemann, Leipzig.Google Scholar
  40. Kukkonen, I. 1967. Spikelet morphology and anatomy of Uncinia Pers. (Cyperaceae). Kew Bull. 21: 93–97.CrossRefGoogle Scholar
  41. ————. 1978. Two new species of Schoenoxiphium (Cyperaceae). Bot. Not. 14: 819–823.Google Scholar
  42. ————. 1983. The genus Schoenoxiphium (Cyperaceae). A preliminary account. Bothalia 14: 819–823.Google Scholar
  43. ———— & T. Timonen. 1979. Species of Ustilaginales, especially of the genus Anthracoidea, as tools in plant taxonomy. Symb. Bot. Upsal. 22: 166–179.Google Scholar
  44. ———— & H. Toivonen. 1988. Taxonomy of wetland carices. Aquatic Bot. 30: 5–22.CrossRefGoogle Scholar
  45. Le Cohu, M.-C. 1967. Recherches taxinomiques sur les Carex du Massif Armoricain. Bot. Rhedon., série A, n°3, 1–213.Google Scholar
  46. Mackenzie, K. K. 1935. Cyperaceae - Cariceae. N. Amer. Fl. 18: 1–478.Google Scholar
  47. Maddison, W. P. & D.R. Maddison. 2005. Mesquite: a modular system for evolutionary analysis. Version 1.06.
  48. Marie-Victorin, F. É. C. 1935. Flore Laurentienne. Les presses de l’Université de Montréal, Montréal, Canada.Google Scholar
  49. Mathews, S. & M. J. Donoghue. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950.PubMedCrossRefGoogle Scholar
  50. Muasya, A. M., D. A. Simpson, M. W. Chase & A. Culham. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl. Syst. Evol. 211: 257–271.CrossRefGoogle Scholar
  51. ————, J. J. Bruhl, D. A. Simpson & M. W. Chase. 2000. Supragenic phylogeny of Cyperaceae: a combined analysis. Pp. 593–600 in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and Evolution. CSIRO, Melbourne.Google Scholar
  52. Nannfeldt, J. A. 1977. The species of Anthracoidea (Ustilaginales) on Carex subgen. Vignea with special regard to the Nordic species. Bot. Not. 130: 351–375.Google Scholar
  53. Nelmes, E. 1951. The genus Carex in Malaysia. Reinwardtia 1: 221–450.Google Scholar
  54. ————. 1952. Facts and speculations on phylogeny in the tribe Cariceae of the Cyperaceae. Kew Bull. 1951: 427–436.Google Scholar
  55. ————. 1955. The genus Carex in Indo-China, including Thailand and lower Burma. Mém. Mus. Natl. Hist. Nat., Ser. B, Bot. 4: 83–182.Google Scholar
  56. Nicolson, D. H. 1992. Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of Subcommittee 3C on the lectotypification of Linnaean generic names. Taxon 41: 552–583.CrossRefGoogle Scholar
  57. Noltie, H. J. 1994. Kobresia Willdenow. Pp. 333–352 in H. J. Noltie (ed.), Flora of Bhutan (vol. 3, part 1). Royal Botanic Garden, Edinburgh.Google Scholar
  58. Ohwi, J. 1936. Cyperaceae Japonicae. I. A synopsis of the Caricoideae of Japan, including the Kuriles, Saghalin, Korea, and Formosa. Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B, Biol. 11: 229–530.Google Scholar
  59. ————. 1965. Flora of Japan (in English). Smithsonian Institution, Washington, DC.Google Scholar
  60. Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612–622.CrossRefGoogle Scholar
  61. Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis, E. A. Zimmer, Z. Chen, V. Savolainen & M. W. Chase. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.PubMedCrossRefGoogle Scholar
  62. Raymond, M. 1951. Sedges as material for phytogeographical studies. Mém. Jard. Bot. Montréal 20:1–23.Google Scholar
  63. ————. 1959. Carices Indochinenses necnon Siamenses. Mém. Jard. Bot. Montréal 53: 1–125.Google Scholar
  64. Reznicek, A. A. 1990. Evolution in sedges (Carex, Cyperaceae). Canad. J. Bot. 68: 1409–1432.Google Scholar
  65. ————. 1992. Carex david-smithii (Cyperaceae), a new species from high Andean Peru. Novon 2: 433–436.CrossRefGoogle Scholar
  66. ————. 1993. Carex. Pp. 243–267 in R. McVaugh, Flora Novo-Galiciana: a descriptive account of the vascular plants of western Mexico. Vol. 13. Limnocharitaceae to Typhaceae. The University of Michigan, Ann Arbor.Google Scholar
  67. Roalson, E. H., J. T. Columbus & E. A. Friar. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst. Bot. 26: 318–341.Google Scholar
  68. Savile, D. B. O. 1979. Fungi as aids in higher plant classification. Bot. Rev. (Lancaster) 43: 377–503.CrossRefGoogle Scholar
  69. ———— & J. A. Calder. 1953. Phylogeny of Carex in the light of parasitism by the smut fungi. Can. J. Bot. 31: 164–174.CrossRefGoogle Scholar
  70. Simmons, M. P. & H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49:369–381.PubMedCrossRefGoogle Scholar
  71. Simpson, D. A., A. M. Muasya, M. V. Alves, J. J. Bruhl, M. W. Chase, C. A. Furness, K. Ghamkhar, P. Goetghebeur, T. R. Hodkinson, A. D. Marchant, A. A. Reznicek, E. H. Roalson, E. Smets, J. R. Starr, W. W. Thomas, K. L. Wilson & X. Zhang. 2007. Phylogeny of Cyperaceae based on DNA sequence data—a new rbcL analysis. Aliso 23: 72–83.Google Scholar
  72. Smith, D. L. 1966. Development of the inflorescence in Carex. Ann. Bot. (Oxford) 30: 475–486.Google Scholar
  73. ———— & J. S. Faulkner. 1976. The inflorescence of Carex and related genera. Bot. Rev. (Lancaster) 42: 53–81.CrossRefGoogle Scholar
  74. Snell, R. S. 1936. Anatomy of the spikelets and flowers of Carex, Kobresia, and Uncinia. Bull. Torrey Bot. Club 63: 277–295.CrossRefGoogle Scholar
  75. Starr, J. R., R. J. Bayer & B. A. Ford. 1999. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am. J. Bot. 86: 563–577.PubMedCrossRefGoogle Scholar
  76. ————, S. A. Harris & D. A. Simpson. 2003. Potential of the 5′ and 3′ ends of the intergenic spacer (IGS) of rDNA in the Cyperaceae: new sequences for lower-level phylogenies in sedges with an example from Uncinia Pers. Int. J. Plant Sci. 164: 213–227.CrossRefGoogle Scholar
  77. ————, ———— & ————. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. Syst. Bot. 29:528–544.CrossRefGoogle Scholar
  78. ————, V. Teoh, E. H. Roalson, A. M. Muasya & D. A. Simpson. 2006. Towards a phylogenetic classification of sedges (Cyperaceae): chloroplast (rbcL, matK, ndhF) and nuclear (ADC) data. Abstract 159, Botany 2006 “Looking to the future—conserving the past”, Chico, California.
  79. ————, S. A. Harris & D. A. Simpson. 2008. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae II: the limits of Uncinia. In R. F. C. Naczi and B. A. Ford (eds.), Sedges: uses, diversity, and systematics of the Cyperaceae. Monogr. Syst. Bot. Missouri Bot. Gard. 108:243–267.Google Scholar
  80. Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, MA.Google Scholar
  81. Thomas, W. W. 1984. The systematics of Rhynchospora section Dichromena. Mem. New York Bot. Gard. 37: 1–116.Google Scholar
  82. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins. 1997. The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876–4882.CrossRefGoogle Scholar
  83. Timonen, T. 1998. Inflorescence structure in the sedge tribe Cariceae (Cyperaceae). Publ. Bot. Univ. Helsinki 26:1–35.Google Scholar
  84. Waterway, M. J. & J. R. Starr. 2007. Phylogenetic relationships in the tribe Cariceae (Cyperaceae) based on nested analyses of three molecular data sets. Aliso 23: 165–192.Google Scholar
  85. ————, T. Hoshino & T. Masaki. 2008. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Bot. Rev. (Lancaster) (this issue).Google Scholar
  86. Wheeler, G. A. 1989. A new species of Carex sect. Abditispicae (Cyperaceae) from northern Argentina and the status of Vesicarex collumanthus in South America. Syst. Bot. 14: 37–42.CrossRefGoogle Scholar
  87. ————. 1996. Three new species of Carex (Cyperaceae) from Argentina and a range extension for C. ecuadorica. Hickenia 2: 189–200.Google Scholar
  88. Yen, A. C. & R. G. Olmstead. 2000a. Molecular systematics of Cyperaceae tribe Cariceae based on two chloroplast DNA regions: ndhF and trnL intron-intergenic spacer. Syst. Bot. 25: 479–494.CrossRefGoogle Scholar
  89. ———— & ————. 2000b. Phylogenetic analysis of Carex (Cyperaceae): generic and subgeneric relationships based on chloroplast DNA. Pp. 602–609 in K. L. Wilson & D. A. Morrison (eds.), Monocots: systematics and evolution. CSIRO, Collingwood, Australia.Google Scholar
  90. Young, N. D. & J. Healy. 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4: 6.PubMedCrossRefGoogle Scholar
  91. Zhang, S. R. 2001. A preliminary revision of the supraspecific classification of Kobresia Willd. (Cyperaceae). Bot. J. Linn. Soc. 135: 289–294.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2008

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OttawaOttawaCanada
  2. 2.Canadian Museum of NatureOttawaCanada
  3. 3.Department of Biological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations