The Botanical Review

, Volume 74, Issue 1, pp 178–196 | Cite as

The Impact of Ecology and Biogeography on Legume Diversity, Endemism, and Phylogeny in the Caribbean Region: A New Direction in Historical Biogeography

  • Matt Lavin
  • Angela Beyra Matos


The legume family is so well represented in the Caribbean that if a preserve was needed somewhere on earth to harbor all of the primary lineages in this family, the flora of just Cuba would suffice. Molecular phylogenetic, biogeographic, and evolutionary rates analysis all suggest that legume diversity and endemism in the Caribbean are mostly of recent origin and are likely a function of the abundance of seasonally dry tropical forests (SDTFs) throughout the neotropics. Legumes have a strong ecological affinity for SDTFs, and the Caribbean basin is well covered by this forest type. Rate-variable molecular clock analysis suggests that the majority of worldwide island lineages of legumes have ages of much less than 30 Ma. Singular historical events invoking land bridges or mobile continental plates are thus not needed to explain Caribbean legume diversity and endemism. The Greater Antilles are large islands located close to the American continent. They are therefore expected to fairly represent the diverse continental lineages of legumes. Yet, they are distant enough to be dispersal limited. As such, island lineages can speciate and diversify over evolutionary time unimpeded by high rates of immigration from the mainland. Vicariance and other standard phylogenetic methods of historical biogeography are likely to be replaced by those of ecological and island biogeography. This is because model selection approaches derived from the neutral concept of isolation by distance will be able to quantify patterns of alpha and beta diversity and detect niche assembly and phylogenetic niche conservatism within and among metacommunities that are hypothesized to constrain phylogeny.


Caribbean Island Historical Biogeography Model Selection Approach Legume Family Area Cladogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La familia leguminosa está tan bien representada en el Caribe, que si fuera necesario preservar algún sitio sobre la tierra, que albergue todos los linajes principales de esta familia, la isla de Cuba, con su flora endémica, podría ser seleccionada entre las áreas que cumplen esta condición. Todos los análisis moleculares, filogeneticos, biogeográficos y de tasas de evolución sugieren que la diversidad y endemismo de las leguminosas en la región del Caribe, es en la mayoría de los casos, de origen reciente y es probablemente una función de la abundancia de los bosques tropicales estacionalmente secos (SDTFs) a lo largo del neotrópico. Las leguminosas tienen una preferencia ecológica fuerte por los bosques tropicales estacionalmente secos (SDTFs), y la cuenca del Caribe está bien cubierta por este tipo de bosque. El análisis molecular de tasa variable sugiere que la mayoría de los linajes de leguminosas de las islas tienen edades mucho menores que 30 millones de años. De este modo, los eventos históricos singulares que invocan puentes terrestres o placas continentales móviles, no necesariamente explican la diversidad y endemismo de Leguminosas del Caribe. Las Antillas Mayores son islas grandes localizadas relativamente cerca del continente americano. Por consiguiente, se espera que en estas islas, estén bien representados los diversos linajes continentales de leguminosas. A pesar de todo, estas islas están bastante distantes de las lagunas oceánicas, lo cual rinde en las islas grandes una dispersión algo limitada. De esta manera, los linajes de estas islas pueden especiar y diversificarse a escala de tiempo evolutivo, sin impedimento por altas tasas de inmigración desde el continente. Así, los métodos de biogeografía de la vicarianza y otros métodos filogenéticos estándar de Biogeografía Histórica tienen la probabilidad de ser sustituidos por los métodos ecológicos y de Biogeografía de las islas. Esto se debe a que los métodos de selección del modelo derivado del concepto neutral de aislamiento por distancia permitirá cuantificar los patrones de alfa y beta diversidad y detectar desviaciones de la relación positiva fuerte entre las distancias geográficas y genéticas (niche assembly) y la conservación de las preferencias ecológicas ancestrales que tienden a heredar las especies (phylogenetic niche conservatism) dentro y entre comunidades que son ensayadas para formular hipótesis sobre el papel de la Biogeografía y la Ecología en la determinación de la filogenia.



We wish to thank Alfonso Delgado Salinas, R. Toby Pennington, Martin F. Wojciechowski and for constructive comments and other assistance, which greatly improved the manuscript.

Literature Cited

  1. Acevedo-Rodríguez, P. 1996. Flora of St. John, U.S. Virgin Islands. Memoirs of the New York Botanical Garden 78: l–581.Google Scholar
  2. Adams, C. D, 1972. Flowering plants of Jamaica, Robert MacLehose and Company Limited. The University Press, Glasgow.Google Scholar
  3. Beyra Matos, A. & M. Lavin. 1999. Monograph of Pictetia (Papilionoideae; Leguminosae) and review of tribe Aeschynomeneae. Systematic Botany Monographs 56: 1–93.Google Scholar
  4. Britton, N. L. & P. Wilson. 1924. Scientific survey of Porto Rico and the Virgin Islands. Vol 5, pt 3. New York Academy of Sciences, New York.Google Scholar
  5. Burnham, K. P. & D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd edition. Springer, New York.Google Scholar
  6. Buskirk, R. E. 1985. Zoogeographic patterns and tectonic history of Jamaica and the northern Caribbean. J. Biogeog. 12: 445–461.CrossRefGoogle Scholar
  7. Correll, D. S. & H. B. Correll. 1982. Flora of the Bahama Archipelago. J. Cramer, Daduz.Google Scholar
  8. Delgado-Salinas, A., R. Bibler & M. Lavin. 2006. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31 (4): 779–791.CrossRefGoogle Scholar
  9. Gooding, E. G. B., A. R. Loveless & G. R. Proctor. 1965. Flora of Barbados. Ministry of Overseas Development, Overseas Research Publication 7. Her Majesty’s Stationery Office, London.Google Scholar
  10. Grefen, E., M. J. Anderson & R. K. Wayne. 2004. Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol. Ecol. 13: 2481–2490.CrossRefGoogle Scholar
  11. Hardy, O. J. & B. Senterre. 2007. Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. J. Ecol. 95: 493–506.CrossRefGoogle Scholar
  12. ——— & B. Sonke. 2004. Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: Assessing the role of limited dispersal and niche differentiation. Forest Ecol. Manage. 197: 191–202.CrossRefGoogle Scholar
  13. Harvey, P. H. & M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford.Google Scholar
  14. Hedges, B. 2000. Biogeography of the West Indies: An overview. In C. A. Woods & F. E. Sergile (eds.), Biogeography of the West Indies, 2nd edition, pp. 15–33. CRC, Boca Raton, FL, USA.Google Scholar
  15. Herendeen, P. S., G. P. Lewis & A. Bruneau. 2003. Floral morphology in caesalpinioid legumes: testing the monophyly of the “Umtiza clade.” Int. J. Pl. Sci. 164(Suppl): S393–S407.CrossRefGoogle Scholar
  16. Holyoak, M. & M. Loreau. 2006. Reconciling empirical ecology with neutral community models. Ecology 87: 1370–1377.PubMedCrossRefGoogle Scholar
  17. Howard, R. A., E. S. Kellogg & G. W. Staples. 1988. Flora of the Lesser Antilles, vol. 4. Arnold Arboretum, Harvard University, Jamaica Plain, MA.Google Scholar
  18. Hu, X.-S., F. He & S. P. Hubbell. 2007. Species diversity in local neutral communities. Nat. 170: 844–853CrossRefGoogle Scholar
  19. Hubbell, S. 2001. The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, Princeton.Google Scholar
  20. Iturralde-Vinent, M. A. & R. D. E. MacPhee. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bull. Amer. Mus. Nat. Hist. 238: 1–95.Google Scholar
  21. Jensen, J. L., A. J. Bohonak & S. T. Kelley. 2005. Isolation by distance web service. BMC Genetics 6: 13.
  22. Johnson, J. B. & K. S. Omland. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19: 101–108.PubMedCrossRefGoogle Scholar
  23. Lavin, M. 1993. Biogeography and systematics of Poitea (Leguminosae). Syst. Bot. Monogr. 37: 1–87.Google Scholar
  24. Lavin, M. 2006. Floristic and geographic stability of discontinuous seasonally dry tropical forests explains patterns of plant phylogeny and endemism, Chapter 19, pp. 433–447 in R. T. Pennington, J. A. Ratter & G. P. Lewis (eds.). Neotropical savannas and seasonally dry forests: plant biodiversity, biogeographic patterns and conservation. CRC, Boca Raton, FL.Google Scholar
  25. ———, M. Thulin, J.-N. Labat & T. Pennington. 2000. Africa, the odd man out: Molecular biogeographic studies of dalbergioid legumes (Fabaceae) suggest otherwise. Systematic Botany 25: 449–467.CrossRefGoogle Scholar
  26. ———, M. F. Wojciechowski, A. Richman, J. Rotella, M. J. Sanderson & A. Beyra-Matos. 2001. Identifying Tertiary radiations of Fabaceae in the Greater Antilles: Alternatives to cladistic vicariance analysis. Int. J. Pl. Sci. 162(6 Suppl): S53–S76.CrossRefGoogle Scholar
  27. ———, M. F. Wojciechowski, P. Gasson, C. H. Hughes & E. Wheeler. 2003. Phylogeny of robinioid legumes (Fabaceae) revisited: Coursetia and Gliricidia recircumscribed, and a biogeographical appraisal of the Caribbean endemics. Syst. Bot. 28: 387–409.Google Scholar
  28. ———, B. D. Schrire, G. Lewis, R. T. Pennington, A. Delgado-Salinas, M. Thulin, C. E. Hughes, A. Beyra-Matos & M. F. Wojciechowski. 2004. Metacommunity processes rather than continental tectonic history better explain geographically structured phylogenies in legumes. Phil. Trans. Roy. Soc., Biol. Ser. 359(1450): 1509–1522.CrossRefGoogle Scholar
  29. ———, P. Herendeen & M. F. Wojciechowski. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology 54(4): 530–549.CrossRefGoogle Scholar
  30. Legendre. P. 1990. Quantitative methods and biogeographic analysis, pp. 9–34 in D. J. Garbary & R. R. South (eds.), Evolutionary biogeography of the marine algae of the North Atlantic. NATO AS1 series, volume G 22. Springer, Berlin.Google Scholar
  31. Lewis, G., B. Schrire, B. Mackinder & M. Lock. 2005. Legumes of the world. Royal Botanic Gardens, Kew, UK.Google Scholar
  32. Liogier A. H. 1985. La flora de la Española, vol. 3. Universidad Central del Este Volumen LVI, serie científica 22. Taller, Ediciones de la Universidad Central del Este, San Pedro de Macorís, República Dominicana.Google Scholar
  33. Losos, J. B. & D. Schluter. 2000. Analysis of an evolutionary species–area relationship. Nature 408(6814): 847–850.PubMedCrossRefGoogle Scholar
  34. McKey, D. 1994. Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle, pp. 211–228 in J. I. Sprent & D. McKey (eds.), Advances in legume systematics, part 5, the nitrogen factor. Royal Botanic Gardens, Kew, UK.Google Scholar
  35. Morley, R. J. & C. W. Dick. 2003. Missing fossils, molecular clocks, and the origin of the Melastomataceae. Amer. J. Bot. 90: 1638–1645.CrossRefGoogle Scholar
  36. Munoz, F., P. Couteron, B. R. Ramesh & R. S. Etienne. 2007. Estimating parameters of neutral communities: from one single to several small samples. Ecology 88: 2482–2488.PubMedCrossRefGoogle Scholar
  37. Nelson, G. J. & N. I. Platnick. 1981. Systematics and biogeography: Cladistics and vicariance. Columbia University Press, New York.Google Scholar
  38. Nicolson, D. H. 1991. Fabaceae in flora of Dominica. 2. Dicotyledoneae. Smithson. Contr. Bot. 77: 89–115.Google Scholar
  39. Oliveira-Filho, A. T., J. A. Jarenkow & M. J. N. Rodal. 2006. Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns, chapter 7, pp. 159–192 in Pennington, R. T., Ratter, J. A. & Lewis, G. P. (eds.), Neotropical savannas and dry forests: Plant diversity, biogeography and conservation. The Systematics Association Special volume Series 69. CRC–Taylor and Francis Group, Boca Raton, FL, USA.Google Scholar
  40. ———, R. T. Pennington, J. Rotella & M. Lavin. 2007. Modeling niche conservation with community phylogenetic distance as a response variable: A model selection approach to the identification of metacommunities. Presentation given at the symposium “The Impact of Plant Phylogenies on Tropical Ecology and Evolutionary Studies.” Association of Tropical Biology and Conservation, Morelia, Mexico.Google Scholar
  41. Pennington, R. T., D. E. Prado & C. A. Pendry. 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeog. 27: 261–273.CrossRefGoogle Scholar
  42. ———, M. Lavin, D. E. Prado, C. A. Pendry, S. Pell & C. Butterworth. 2004. Historical climate change and speciation: Neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Phil. Trans. Roy. Soc., London, B 359: 515–538.CrossRefGoogle Scholar
  43. ———, J. E. Richardson & M. Lavin. 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol. 172: 605–616.PubMedCrossRefGoogle Scholar
  44. Prado, D. E. & P. E. Gibbs. 1993. Patterns of species distributions in the dry seasonal forests of South America. Ann. Missouri Bot. Gard. 80: 902–927.CrossRefGoogle Scholar
  45. de Queiroz, A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution 20: 68–73.PubMedCrossRefGoogle Scholar
  46. Riley-Hulting, E. T., A. Delgado-Salinas & M. Lavin. 2004. Phylogenetic systematics of Strophostyles (Fabaceae): A North American temperate genus within a neotropical diversification. Syst. Bot. 29: 627–653.CrossRefGoogle Scholar
  47. Rosen, D. 1978. Vicariant patterns and historical explanation in biogeography. Systematic Zoology 27: 159–188.CrossRefGoogle Scholar
  48. Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19: 101–109.PubMedGoogle Scholar
  49. ———, M. J. 2006. Paloverde: An OpenGL 3-D phylogeny browser. Bioinformatics 22: 1004–1006.PubMedCrossRefGoogle Scholar
  50. Sauget, J. S. & E. E. Liogier. 1951. Leguminosas, flora de Cuba. Vol 2. Contribuciones Ocasionales del Museo de Historia Natural del Colegio de La Salle 10: 224–367.Google Scholar
  51. Schrire, B. D., M. Lavin & G. P. Lewis. 2005. Global distribution patterns of the Leguminosae: insights from recent phylogenies. In I. Friis & H. Balslev (eds.), Plant diversity and complexity patterns: Local, regional and global dimensions. Biologiske Skrifter 55: 375–422.Google Scholar
  52. Snyder, J. C., B. Wiedenheft, M. Lavin, F. F. Roberto, J. Spuhler, A. C. Ortmann, T. Douglas & M. Young. 2007. Virus movement maintains local virus population diversity. Proc. Nat. Acad. Sci. USA 104: 19102–19107.PubMedCrossRefGoogle Scholar
  53. Thulin, M. 2000. Chapmannia (Leguminosae–Stylosanthinae) extended. Nordic Journal of Botany 19: 597–607.CrossRefGoogle Scholar
  54. ——— & M. Lavin. 2001. Phylogeny and biogeography of the Ormocarpum group (Fabaceae): A new genus Zygocarpum from the Horn of Africa region. Syst. Bot. 26: 299–317.Google Scholar
  55. ———, M. Lavin, R. Pasquet & A. Delgado-Salinas. 2004. Phylogeny and biogeography of Wajira (Leguminosae): A monophyletic segregate of Vigna centered in the Horn of Africa region. Syst. Bot. 29: 903–920.CrossRefGoogle Scholar
  56. Tiffney, B. H. 1985. The Eocene North Atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern hemisphere. Journal of the Arnold Arboretum 66: 243–273.Google Scholar
  57. Tuomisto, H., K. Ruokolainen & M. Yli-Halla. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299: 241–244.PubMedCrossRefGoogle Scholar
  58. Volkov, I., J. R. Banavar, S. P. Hubbell & A. Maritan. 2007. Patterns of relative species abundance in rainforests and coral reefs. Nature 450: 45–49.PubMedCrossRefGoogle Scholar
  59. Vormisto, J, J.-C. Svzenning, P. Hall & H. Balslev. 2004. Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J. Ecol. 92: 577–588.CrossRefGoogle Scholar
  60. Webb, C. O., D. D. Ackerly, M. McPeek & M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology & Systematics 33: 475–505.CrossRefGoogle Scholar
  61. Williams, E. E. 1989. Old problems and new opportunities in West Indian biogeography, pp. 1–46 in C. A. Woods (ed.), Biogeography of the West Indies: Past, present, and future. Sandhill Crane, Gainesville, FL, USA.Google Scholar
  62. Wojciechowski, M. F., M. Lavin & M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Amer. J. Bot. 91: 1845–1861.CrossRefGoogle Scholar
  63. Yoder, A. D., M. M. Burns, S. Zehr & T. Delefosse. 2003. Single origin of Malagasy Carnivora from an African ancestor. Nature 421: 734–737.PubMedCrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2008

Authors and Affiliations

  1. 1.Plant Sciences and Plant PathologyMontana State UniversityBozemanUSA
  2. 2.Centro de Investigaciones de Medio Ambiente de Camagüey, CITMACamagüeyCuba

Personalised recommendations