The Botanical Review

, 74:78 | Cite as

Molecular Phylogenetic Studies of Caribbean Palms (Arecaceae) and Their Relationships to Biogeography and Conservation

  • Julissa Roncal
  • Scott Zona
  • Carl E. Lewis


The Caribbean Islands are one of the world’s 34 biodiversity hotspots, remarkable for its biological richness and the high level of threat to its flora and fauna. The palms (family Arecaceae) are well represented in the West Indies, with 21 genera (three endemic) and 135 species (121 endemic). We provide an overview of phylogenetic knowledge of West Indian Palms, including their relationships within a plastid DNA-based phylogeny of the Arecaceae. We present new data used to reconstruct the phylogeny of tribe Cryosophileae, including four genera found in the West Indies, based on partial sequences of the low-copy nuclear genes encoding phosphoribulokinase (PRK) and subunit 2 of RNA polymerase II (RPB2). Recently published phylogenetic studies of tribe Cocoseae, based on PRK sequences, and tribes Cyclospatheae and Geonomateae, based on PRK and RPB2 sequences, also provide information on the phylogenetic relationships of West Indian palms. Results of these analyses show many independent origins of the West Indian Palm flora. These phylogenetic studies reflect the complex envolutionary history of the West Indies and no single biogeographical pattern emerges for these palms. The present day distributions of West Indian palms suggest complicated evolutionary interchange among islands, as well as between the West Indies and surrounding continents. We identified six palm lineages that deserve conservation priority. Species-level phylogenies are needed for Copernicia, Sabal, and Roystonea before we can build a more complete understanding of the origin and diversification of West Indian palms.


Molecular Phylogenetic Studies Caribbean Palms (Arecaceae) Biogeography Conservation Low-copy Nuclear DNA 


Las Islas del Caribe constituyen uno de los 34 “hotspots” de biodiversidad del mundo, notables por su riqueza biológica y el alto grado de amenaza de su flora y fauna. La familia Arecaceae esta bien representada en Las Antillas con 21 géneros (tres endémicos) y 135 especies (121 endémicas). Presentamos una síntesis del conocimiento filogénetico de las palmas de Las Antillas incluyendo su posición dentro de la filogenia de la familia Arecaceae basada en ADN cloroplástico. Construímos una nueva filogenia para la tribu Cryosophileae, la cual incluye cuatro géneros de Las Antillas, basada en secuencias parciales de los genes nucleares de copia baja fosforibulokinasa (PRK) y la ARN polimerasa II (RPB2). Los estudios filogenéticos publicados de la tribu Cocoseae basada en secuencias de PRK, y de las tribus Cyclospatheae y Geonomateae basadas en secuencias de PRK y RPB2, también proveen información sobre las relaciones filogéneticas de las palmas de Las Antillas. Estos resultados indican el origen evolutivo múltiple de estas palmas. Los estudios filogenéticos reflejan la compleja historia evolutiva de Las Antillas y no existe un único patrón biogeográfico para las palmas de esta región. Las distribuciones actuales de las palmas de Las Antillas sugieren un complejo intercambio entre islas, así como estre islas y las masas continentales vecinas. Identificamos seis linajes de palmas que merecen prioridad de conservación. Se necesitan estudios filogéneticos para los géneros Copernicia, Sabal, y Roystonea con el fin de mejorar nuestro entendimiento sobre el origen y diversificación de las palmas de Las Antillas.



We thank Javier Francisco-Ortega, Fabian Michelangeli, and Mike Maunder for their comments on earlier versions of this manuscript. Financial support for phylogenetic studies developed by the authors came from the Tropical Biology Program at Florida International University (TBP-FIU), Fairchild Tropical Botanic Garden, the Stanley Smith Horticultural Trust, the International Palm Society, the Danish National Science Research Council, the South Florida Palm Society, the Marina Riley Scholarship, and the Botanical Society of America. This is contribution 145 of TBP-FIU. We acknowledge Trénel et al. for making accessible online their phylogenetic trees prior to publication and Sandy Namoff for GenBank assistance with the Cryosophileae. NSF program CREST-CATEC of the University of Puerto Rico Rio Piedras funded JR’s participation in the IX Latin American Botanical Conference.

Literature Cited

  1. Asmussen, C. B. 1999a. Relationships of tribe Geonomeae (Arecaceae) based on plastid rps16 DNA sequences. Acta. Bot. Venez. 2:65–76.Google Scholar
  2. ———. 1999b. Toward a chloroplast DNA phylogeny of the tribe Geonomeae (Palmae). Mem New York Bot. Gar. 83:121–129.Google Scholar
  3. ——— & M. W. Chase. 2001. Coding and noncoding plastid DNA in palm family systematics. Amer. J. Bot. 88:1103–1117.CrossRefGoogle Scholar
  4. ———, W. J. Baker & J. Dransfield. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 intron and trnL–trnF plastid DNA sequences. In: Wilson, K. L. & D. A. Morrison (eds) Systematics and evolution of monocots. CSIRO Publishing, Collingwood, Victoria, pp 525–537.Google Scholar
  5. ———, J. Dransfield, V. Dieckmann, A. S. Barfod, J. C. Pintaud & W. J. Baker. 2006. A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot. J. Linn. Soc. 151:15–38.CrossRefGoogle Scholar
  6. Bailey, L. H. 1938. The Calyptrogyne-Calyptronoma problem—the Manac palms. Gentes Herb 4:152–172.Google Scholar
  7. ———. 1940. Acoelorraphe vs. Paurotis—silver-saw palm. Gentes Herb. 4:361–365.Google Scholar
  8. Bailey, C. D., C. E. Hughes & S. A. Harris. 2004. Using RAPDs to identify DNA sequence loci for species level phylogeny reconstruction: an example from Leucaena (Fabaceae). Syst. Bot. 29:4–14.CrossRefGoogle Scholar
  9. Baker, W. J., C. B. Asmussen, S. Barrow, J. Dransfield & T. A. Hedderson. 1999. A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from the trnL–trnF region. Pl. Syst. Evol. 219:111–126.CrossRefGoogle Scholar
  10. ———, T. Hedderson & J. Dransfield. 2000a. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Molec. Phyl. Evol. 14:195–217.CrossRefGoogle Scholar
  11. ———, ——— & ———. 2000b. Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5SnrDNA spacer sequence data. Molec. Phyl. Evol. 14:218–231.CrossRefGoogle Scholar
  12. Balick, M. J. & H. Deck. 1990. Useful palms of the world: a synoptic bibliography. Columbia University Press, New York.Google Scholar
  13. Bayton, R. P. 2005. Borassus L. and the Borassoid palms: systematics and evolution. PhD thesis, University of Reading.Google Scholar
  14. Beccari, O. 1912. The palms indigenous to Cuba II. Pomona Coll. J. Econ. Bot. 2:361–371.Google Scholar
  15. Bermingham, E. 1994. Historical biogeography of the bananaquit (Coereba flaveola) in the Caribbean region: a mitochondrial DNA assessment. Evolution 48:1041–1061.CrossRefGoogle Scholar
  16. Borchsenius, F. & R. Bernal. 1996. Aiphanes (Palmae). Flora Neotrop. 70:1–95.Google Scholar
  17. ———, H. B. Pedersen & H. Balslev. 1998. Manual to the palms of Ecuador. AAU Reports. Dept. of Systematic Botany, University of Aarhus, Aarhus.Google Scholar
  18. Borhidi, A. & O. Muñiz. 1983. Catálogo de plantas Cubanas amenazadas o extinguidas. Academia de Ciencias de Cuba, La Havana.Google Scholar
  19. ——— & ———. 1985. Adiciones al catálogo de palmas de Cuba. Acta Bot. Hung. 31:225–230.Google Scholar
  20. Brightsmith, D. J. 2005. Parrot nesting in southeastern Peru: seasonal patterns and keystone trees. Wilson Bull. 117:296–305.CrossRefGoogle Scholar
  21. Burret, M. 1930. Geonomeae Americanae. Bot. Jahrb. Syst. 63:123–170.Google Scholar
  22. Byg, A. & H. Balslev. 2006. Palms in indigenous and settler communities in southeastern Ecuador: farmers' perceptions and cultivation practices. Agroforest Systems. 67:147–158.CrossRefGoogle Scholar
  23. Chase, M. W., D. E. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. J. Hahn, S. Sullivan, J. Joseph, M. Molvray, P. J. Kores, T. J. Givnich, K. J. Sytsema & J. C. Pires. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson, K. L. & D. A. Morrison (eds) Systematics and evolution of monocots. CSIRO Publishing, Collingwood, Victoria, pp 3–16.Google Scholar
  24. Columbus, C. 2001. The journal of Christopher Columbus (during his first voyage, 1492–93) and documents relating to the voyages of John Cabot and Gaspar Corte Real. Translated by C. R. Markham. Adamant Media Corporation.Google Scholar
  25. Cuenca, A. & C. Asmussen-Lange. 2007. Phylogeny of the palm tribe Chamaedoreeae (Arecaceae) based on plastid DNA sequences. Syst. Bot. 32:250–263.CrossRefGoogle Scholar
  26. Dahlgren, B. & S. Glassman. 1963. A revision of the genus Copernicia. 2. West Indian species. Gentes Herb. 9:43–232.Google Scholar
  27. De Nevers, G. 1995. Notes on Panama palms. Proc. Calif. Acad. Sci. 48:329–342.Google Scholar
  28. Denton, A. L., B. L. McConaughy & B. D. Hall. 1998. Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. Molec. Biol. Evol. 15:1082–1085.PubMedGoogle Scholar
  29. Donovan, S. K. & T. A. Jackson. 1994. Caribbean geology: an introduction. Univ. West Indies, Kingston.Google Scholar
  30. Dransfield, J., N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley & C. E. Lewis. 2005. A new phylogenetic classification of the palm family, Arecaceae. Kew Bull. 60:559–569.Google Scholar
  31. Drude, O. 1889. Palmae. In: Engler, A. & K. Prantl (eds) Dienaturlichen pflanzenfamilien vol 2 part 3. Wilhelm Engelmann, Leipzig, pp 1–93.Google Scholar
  32. Dugand, A. 1972. Las palmeras y el hombre. Cespedesia 1:31–103.Google Scholar
  33. Evans, R. J. 2001. Monograph of Colpothrinax. Palms 45:177–195.Google Scholar
  34. Francisco-Ortega, J., E. Santiago-Valentin, P. Acevedo-Rodriguez, C. Lewis, J. Pipoly III, A. W. Meerrow & M. Maunder. 2007. Seed plant genera endemic to the Caribbean Island biodiversity hotspot: a review and a molecular phylogenetic perspective. Bot. Rev. 73:183–234.CrossRefGoogle Scholar
  35. Fritsch, P. W. & T. D. McDowell. 2003. Biogeography and phylogeny of Caribbean plants-introduction. Syst. Bot. 28:376–377.Google Scholar
  36. Galeano-Garcés, G. 1986. Primer registro de dos generos de palms para la flora Colombiana. Mutisia 66:1–4.Google Scholar
  37. Gaut, B. S., S. V. Muse, W. D. Clark & M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of the monocotyledonous plants. J. Molec. Evol. 35:292–303.PubMedCrossRefGoogle Scholar
  38. Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America. Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 69:557–593.CrossRefGoogle Scholar
  39. Glassman, S. F. 1972. A revision of B. E. Dahlgren's index of American palms. Phanerog. Monogr. 6:1–256.Google Scholar
  40. ———. 1987. Revisions of the palm genus Syagrus Mart. and other selected genera in the Cocos Alliance. Illinois Biol. Monogr. 56:1–230.Google Scholar
  41. Govaerts, R. & J. Dransfield. 2005. World checklist of palms. Royal Botanic Gardens, Kew.Google Scholar
  42. Graham, A. 2003. Historical phytogeography of the Greater Antilles. Brittonia. 55:357–383.CrossRefGoogle Scholar
  43. Grisebach, A. H. R. 1864. Palmae. Pp 513–523 in Flora of the British West Indian islands. Lovell Reeve and Company, London.Google Scholar
  44. Gunn, B. F. 2004. The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Missouri Bot. Gar. 91:505–522.Google Scholar
  45. Hahn, W. 1999. Molecular systematic studies of the Palmae. Mem New York Bot. Gar. 83:47–70.Google Scholar
  46. ———. 2002. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. Syst. Biol. 51:92–112.PubMedCrossRefGoogle Scholar
  47. Harley, M. 2006. A summary of fossil records for Arecaceae. Bot. J. Lin. Soc. 151:39–67.CrossRefGoogle Scholar
  48. Hawkes, A. D. 1949. A checklist of palms of Cuba. Phytologia 3:145–149.Google Scholar
  49. Hedges, S. B. 2006. Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Ann. Missouri Bot. Gard. 93:231–244.CrossRefGoogle Scholar
  50. Henderson, A. 1999. A phylogenetic analysis of the Euterpeinae (Palmae: Arecoideae: Areceae) based on morphology and anatomy. Brittonia 51:106–113.CrossRefGoogle Scholar
  51. ———. 2002. Phenetic and phylogenetic analysis of Reinhardtia (Palmae). Amer. J. Bot. 89:1491–1502.CrossRefGoogle Scholar
  52. ———. 2005. A multivariate study of Calyptrogyne (Palmae). Syst. Bot. 30:60–83.CrossRefGoogle Scholar
  53. ——— & M. Balick. 1991. Attalea crassispatha, a rare and endemic Haitian palm. Brittonia 43:189–194.CrossRefGoogle Scholar
  54. ——— & G. Galeano. 1996. Euterpe, Prestoea, and Neonicholsonia (Palmae: Euterpeinae). Flora Neotrop. 72:1–90.Google Scholar
  55. ———, ——— & R. Bernal. 1995. Field guide to the palms of the Americas. Princeton University Press, Princeton.Google Scholar
  56. Hooker, J. D. 1883. Palmae. In: Bentham, G. & J. D. Hooker (eds) Genera plantarum vol 3. L. Reeve, London, pp 870–948.Google Scholar
  57. Horst, O. H. 1997. The utility of palms in the cultural landscape of the Dominican Republic. Principes 41:15–28.Google Scholar
  58. Hughes, C. E., R. J. Eastwood & C. D. Bailey. 2006. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Philos. Trans. Ser. B 361:211–225.CrossRefGoogle Scholar
  59. IUCN. 2001. Categories and Criteria (version 3.1). IUCN, Gland, Switzerland [].
  60. Kahn, F. & J. J. De Granville. 1992. Palms in forest ecosystems of Amazonia. Ecological studies. Springer-Verlag, Berlin.Google Scholar
  61. León, H. 1939. Contribución al estudio de las palmas de Cuba. III. Género Coccothrinax. Mem. Soc. Cub. Hist. Nat. 13:107–156.Google Scholar
  62. ———. 1944. Contribution to the study of Cuban palms, VII. The genus Calyptrogyne in Cuba. Contr. Ocas. Mus. Hist. Nat. del Colegio “De la Salle”. 3:1–12.Google Scholar
  63. Levi-Strauss, C. 1952. The use of wild plants in tropical South America. Econ. Bot. 6:252–270.Google Scholar
  64. Lewis, C. E. & J. J. Doyle. 2001. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Molec. Phyl. Evol. 19:409–420.CrossRefGoogle Scholar
  65. ——— & ———. 2002 Phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. Pl. Syst. Evol. 236:1–17.CrossRefGoogle Scholar
  66. ——— & N. Martinez. 2000. Identity of the Hyophorbe palms at the botanical garden of Cienfuegos, Cuba. Palms 44:93–97.Google Scholar
  67. ———, W. Baker & C. B. Asmussen. 2000. DNA and palm evolution. Palms 44:19–24.Google Scholar
  68. Loo, A. H. B., J. Dransfield, M. W. Chase & W. J. Baker. 2006. Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Molec. Phyl. Evol. 39:598–618.CrossRefGoogle Scholar
  69. McDowell, T. & B. Bremer. 1998. Phylogeny, diversity, and distribution of Exostema (Rubiaceae): implications of morphological and molecular analyses. Pl. Syst. Evol. 212:215–246.CrossRefGoogle Scholar
  70. Moore, H. A. 1957. Reinhardtia. Gentes Herb. 8:541–576.Google Scholar
  71. ———. 1973. The major groups of palms and their distribution. Gentes Herb. 11:27–141.Google Scholar
  72. Mort, M. & D. Crawford. 2004. The continuing research: low-copy nuclear sequences for lower-level plant molecular phylogenetic studies. Taxon 53:257–261.CrossRefGoogle Scholar
  73. Moya, C., J. Martínez-Fortún, J. Ludgardo, J. García & E. Rodríguez. 1989. Las Copernicias (Yareyes y Jatas) en Sancti Spíritus. Palmas endemicas que necesitan proteccion. Revista Jard. Bot. Nac. Univ. Habana 10:49–62.Google Scholar
  74. ———, A. Leiva, J. Valdes, J. Martinez-Fortun & A. Hernandez. 1991. Gaussia spirituana Moya et Leiva, sp. Nov.: Una nueva palma de Cuba Central. Revista Jard. Bot. Nac. Univ. Habana 12:15–19.Google Scholar
  75. Muller, J. 1981. Fossil pollen record of extant angiosperms. Bot. Rev. 47:1–142.CrossRefGoogle Scholar
  76. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.PubMedCrossRefGoogle Scholar
  77. Nickerson, J. & G. Drouin. 2004. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Molec. Phyl. Evol. 31:403–415.CrossRefGoogle Scholar
  78. Norup, M. V., J. Dransfield, M. W. Chase, A. S. Barfod, E. S. Fernando & W. J. Baker. 2006. Homoplasious character combinations and generic delimitations: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Amer. J. Bot. 93:1065–1080.CrossRefGoogle Scholar
  79. Oxelman, B., N. Yoshikawa, B. L. McConaughy, J. Luo, A. L. Denton & B. D. Hall. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Molec. Phyl. Evol. 32:462–479.CrossRefGoogle Scholar
  80. Peres, C. A. 1994. Composition, density, and fruiting phenology of arborescent palms in an Amazonian terra firme forest. Biotropica 26:285–294.CrossRefGoogle Scholar
  81. Pfeil, B. E., C. L. Brubaker, L. A. Craven & M. D. Crisp. 2004. Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. Molec. Bio. Evol. 21:1428–1437.CrossRefGoogle Scholar
  82. Poinar, G. Jr. 2002a. Fossil palm flowers in Dominican and Mexican amber. Bot. J. Lin. Soc. 138:57–61.CrossRefGoogle Scholar
  83. ———. 2002b. Fossil palm flowers in Dominican and Baltic amber. Bot. J. Lin. Soc. 139:361–367.CrossRefGoogle Scholar
  84. ——— & J. Santiago-Blay. 1997. Paleodoris lattini gen. n. sp. n. a fossil palm bug (Hemiptera: Thaumastocoridae: Xylastodorinae) in Dominican amber, with habits discernible by comparative functional morphology. Entomol. Scandinavica 28:307–310.Google Scholar
  85. Popp, M. & B. Oxelman. 2001. Inferring the history of the polyploidy Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Molec. Phyl. Evol. 20:474–481.CrossRefGoogle Scholar
  86. Quero, H. & R. W. Read. 1986. A revision of the palm genus Gaussia. Syst Bot. 11:145–154.CrossRefGoogle Scholar
  87. Read, R. W. 1969. Some notes on Pseudophoenix and a key to the species. Principes 10:55–61.Google Scholar
  88. ———. 1975. The genus Thrinax (Palmae: Coryphoideae). Smithsonian Contr. Bot. 19:1–98.Google Scholar
  89. ———. 1979. Palms of the lesser antilles. Department of Botany, Smithsonian Institution, Washington DC.Google Scholar
  90. ———. 1988. Utilization of indigenous palms in the Caribbean (in relation to their abundance). Adv. Econ. Bot. 6:137–143.Google Scholar
  91. ———, T. A. Zanoni & M. Mejia. 1987. Reinhardtia paiewonskiana (Palmae), a new species for the West Indies. Brittonia 39:20–25.CrossRefGoogle Scholar
  92. Roncal, J., J. Francisco-Ortega, C. B. Asmussen & C. E. Lewis. 2005a. Molecular phylogenetics of tribe Geonomeae (Arecaceae) using nuclear DNA sequences of phosphoribulokinase and RNA polymerase II. Syst. Bot. 30:275–283.CrossRefGoogle Scholar
  93. ———, S. Zona & C. E. Lewis. 2005b. Calyptrogyne plumeriana: a new name for a familiar palm. Palms 49:149–150.Google Scholar
  94. Salzman, V. T. & W. S. Judd. 1995. A revision of the greater antillean species of Bactris (Bactridinae: arecaceae). Brittonia 47:345–371.CrossRefGoogle Scholar
  95. Sanders, R. W. 1991. Cladistics of Bactris (Palmae): survey of characters and refutation of Burret's classification. Selbyana 12:105–133.Google Scholar
  96. Sang, T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Molec. Biol. 37:121–147.CrossRefGoogle Scholar
  97. Santiago-Valentin, E. & R. G. Olmstead. 2004. Historical biogeography of Caribbean plants: introduction to current knowledge and possibilities from a phylogenetic perspective. Taxon 53:299–319.CrossRefGoogle Scholar
  98. Schlüter, P. M., T. F. Stuessy & H. F. Paulus. 2005. Making the first step: practical considerations for the isolation of low-copy nuclear sequence markers. Taxon 54:766–770.Google Scholar
  99. Schubart, C. D., R. Diesel & S. B. Hedges. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365.CrossRefGoogle Scholar
  100. Small, R., R. Cronn & J. Wendel. 2004. L.A.S Johnson Review No.2. Use of nuclear genes for phylogeny reconstruction in plants. Austr. Syst. Bot. 17:145–170.CrossRefGoogle Scholar
  101. Smith, M. L., S. B. Hedges, W. Buck, A. Hemphill, S. Inchaustegui, M. A. Ivie, D. Martina, M. Maunder & J. Francisco-Ortega. 2004. Caribbean islands. In: Mittermeier, R. A., R. R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. G. Mittermeier, J. Lamoreux & G. A. B. da Fonseca (eds) Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. CEMEX, Mexico DF, pp. 112–118.Google Scholar
  102. Svenning, J. C. 2001. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot. Rev. 67:1–53.CrossRefGoogle Scholar
  103. Syring, J., A. Willyard, A. Cronn & A. Liston. 2005. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Amer. J. Bot. 92:2086–2100.CrossRefGoogle Scholar
  104. Terborgh, J., R. B. Foster & P. Nuñez. 1996. Tropical tree communities: a test of the nonequilibrium hypothesis. Ecology 77:561–567.CrossRefGoogle Scholar
  105. Thomas, M. M., N. C. Garwood, W. J. Baker, S. A. Henderson, S. J. Russell, D. R. Hodel & R. M. Bateman. 2006. Molecular phylogeny of the palm genus Chamaedorea, based on low copy nuclear genes PRK and RPB2. Molec. Phyl. Evol. 38:398–415.CrossRefGoogle Scholar
  106. Trénel, P., M. Gustafsson, W. J. Baker, C. B. Asmussen-Lange, J. Dransfield & F. Borchsenius. 2007. Mid-tertiary dispersal, not Gondwanan vicariance explains distribution patters in the wax palm subfamily (Ceroxyloideae: Arecaceae). Molec. Phyl. Evol. 45:272–288.CrossRefGoogle Scholar
  107. Uhl, N. W. & J. Dransfield. 1987. Genera palmarum. A classification of palms based on the work of Harold E. Moore, Jr. Allen Press, Lawrence.Google Scholar
  108. ———, ———, J. I. Davis, M. A. Luckow, K. S. Hansen & J. J. Doyle. 1995. Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. In: Rudall, P. J., P. J. Cribb, F. Cutler & C. J. Humphries (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Richmond, pp 623–661.Google Scholar
  109. von Martius, C. F. 1824. Palmarum familia ejusque genera. Lindaueri, Munich.Google Scholar
  110. Vormisto, J. 2002. Making and marketing chambira hammocks and bags in the village of Brillo Nuevo, Northeastern Peru. Econ. Bot. 56:27–40.CrossRefGoogle Scholar
  111. Wallace, A. R. 1853. Palm trees of the Amazon and their uses. John van Voorst, London.Google Scholar
  112. Wessels Boer, J. G. 1968. The Geonomoid palms. Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk. Twede Reeks deel LVIII, No. 1, Amsterdam.Google Scholar
  113. Wilson, M., B. Gaut & M. Clegg. 1990. Chloroplast DNA evolves slowly in the palm family (Arecaceae). Molec. Biol. Evol. 7:303–314.PubMedGoogle Scholar
  114. Zona, S. 1990. A monograph of Sabal (Arecaceae: Coryphoideae). Aliso 12:583–666.Google Scholar
  115. ———. 1995. A revision of Calyptronoma (Arecaceae). Principes 39:140–151.Google Scholar
  116. ———. 1996. Roystonea (Arecaceae: Arecoideae). Flora Neotrop. 71:1–36.Google Scholar
  117. ———. 2002. A revision of Pseudophoenix. Palms 46:19–38.Google Scholar
  118. ———, R. Verdecia, A. Leiva-Sánchez, C. E. Lewis & M. Maunder. 2007. Conservation status of West Indian palms (Arecaceae). Oryx. 41:300–305.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2008

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AarhusAarhus CDenmark
  2. 2.Deparment of Biological SciencesFlorida International UniversityMiamiUSA
  3. 3.Center for Tropical Plant ConservationFairchild Tropical Botanic GardenCoral GablesUSA

Personalised recommendations