Advertisement

Brittonia

, Volume 70, Issue 4, pp 427–444 | Cite as

Notes on the Burseraceae in central Amazonia, including four new taxa. Studies in neotropical Burseraceae XXVI

  • Douglas C. Daly
Article
  • 68 Downloads

Abstract

The Burseraceae are known to comprise one of the most important tree families in Amazonia, but examination of Burseraceae diversity indicates that this importance is achieved differently in different parts of the Amazon, generally showing greater relative density compared to relative diversity in the east and greater relative diversity compared to relative density in the west, but both high relative density and diversity in central Amazonia. The patterns of relative density may be explained by current climates and by soils, but those of diversity are more likely a function of historical events. Revision of the Burseraceae for two projects near Manaus, Brazil revealed four new taxa. Protium hebetatum is widespread in western Amazonia, but it is one of the most common trees in central and west-central Amazonia; it resembles P. grandifolium. Protium tonyanum is a distinctive new species in poorly resolved sect. Sarcoprotium. Protium paniculatum var. modestum is known thus far only from the vicinity of Manaus plus several localities in the state of Amazonas, Venezuela; a key to the varieties is provided. Dacryodes hopkinsii is one of a group of four species in that genus from Amazonia and the Venezuelan Guayana with relatively large and fleshy flowers that are functionally bisexual. The discovery of these new taxa underscores the biological importance of Manaus and vicinity as a center of diversity for many taxa and exemplifies the synergy between well-designed floristic projects and systematics.

Keywords

Biodiversity Dacryodes Manaus Neotropics Protium taxonomy 

Notes

Acknowledgments

I thank the late Rupert Barneby for his help with the selection of epithets, and Bobbi Angell for her revealing and handsome illustrations. I am particularly grateful to Michael J. Hopkins, José Eduardo Ribeiro, and their colleagues in the Projeto Flora da Reserva Ducke for supporting my field work at the reserve, for key re-collections from specific trees, for superb logistical support overall, and for the professionalism, patience and tenacity to bring their much-needed floristic project to fruition. Sue Laurance generously provided data from the Biological Dynamics of Forest Fragments Project in Manaus, and Elaine Hooper generously shared her insightful analyses of tree and seedling as a function of forest fragment size.

Literature cited

  1. Balée, W. L. 1986. Análise preliminar de inventário florestal e a etnobotânica Ka'apor (Maranhão). Boletim do Museu Paraense Emílio Goeldi, Botânica 2: 141–167.Google Scholar
  2. -----. 1994. Footprints in the forest. Ka’apor ethnobotany–the historical ecology of plant utilization by an Amazonian people. Columbia University Press, New York.Google Scholar
  3. Balslev, H., J. Luteyn, B. Ollgaard & L. B. Holm-Nielsen. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92: 37–57.Google Scholar
  4. Black, G. A., Th. Dobzhansky, & C. Pavan. 1950. Some attempts to esimate species diversity and population density of trees in Amazonian forests. Botanical Gazette 3: 413–425.CrossRefGoogle Scholar
  5. Campbell, D. G., D. C. Daly, G. T. Prance, & U. N. Maciel. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Pará, Brazil. Brittonia 38: 369–393.CrossRefGoogle Scholar
  6. -----, J. L. Stone & A. Rosas, Jr. 1992. A comparison of the phytosociology and dynamics of three floodplain (várzea) forests of known ages, Rio Juruá, western Brazilian Amazon. Botanical Journal of the Linnean Society 108: 213–237.CrossRefGoogle Scholar
  7. Daly, D. C., P. V. A. Fine & M. C. Martínez-Habibe. 2012. Burseraceae: A model for studying the Amazon flora. Rodriguesia 63: 21–30.CrossRefGoogle Scholar
  8. Duivenvoorden, J. F. 1994. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodiversity and Conservation 3: 685–715.CrossRefGoogle Scholar
  9. -----. 1995. Tree species composition and rain forest-environment relationships in the middle Caquetá, Colombia, NW Amazonia. Vegetatio 120: 91–113.Google Scholar
  10. Faber-Langendoen, D. & A. H. Gentry. 1991. The structure and diversity of rain forests at Bajo Calima, Chocó region, western Colombia. Biotropica 23: 2–11.CrossRefGoogle Scholar
  11. Ferreira, L. V. 1997. Effects of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in Central Amazonia. Biodiversity and Conservation 6: 1353–1363.CrossRefGoogle Scholar
  12. ----- & G. T. Prance. 1998. Species richness and floristic composition in four hectares in the Jaú National Park in upland forests in Central Amazonia. Biodiversity and Conservation 7: 1349–1364.Google Scholar
  13. Fine, P. V. A., D. C. Daly, F. G. Villa M. I. A. Mesones, & K. M. Cameron. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the Western Amazon. Evolution 29: 1464–1478.Google Scholar
  14. Fine, P. V. A., F. Zapata, & D. C. Daly. 2014. Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution 68: 1988–2004 [Evolution on-line DOI:  https://doi.org/10.1111/evo.12414].CrossRefPubMedGoogle Scholar
  15. Foster, R. 1990. The floristic composition of the Rio Manu floodplain forests. Pp. 99–111. In: A. H. Gentry (ed.), Four neotropical rainforests. Yale University Press, New Haven.Google Scholar
  16. Gentry, A. H. 1990. Floristic similarities and differences between southern Central America and upper and central Amazonia. Pp. 141–157. In: A. H. Gentry (ed.), Four neotropical rainforests. Yale University Press, New Haven.Google Scholar
  17. Giraldo-Cañas, D. 1999. Riqueza, composición y distribución florística de los paisajes fisiográficos del eje de los ríos Apaporís y Amazonas, Amazonía colombiana. Darwiniana 37: 25–35.Google Scholar
  18. Hoorn, C. F. P. Wesselingh, H. Ter Steege, M. A. Bermudez, A. Mora, J. Sevink, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, & A. Antonelli. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330 (6006): 927–931.CrossRefPubMedGoogle Scholar
  19. Knab-Vispo, C., P. Berry & G. Rodríguez. 1999. Floristic and structural characterization of a lowland rain forest in the Caura watershed, Venezuelan Guayana. Acta Botanica Venezolana 22: 325–359.Google Scholar
  20. Lisboa, P. L. B. 1989. Estudo florístico da vegetação arbórea de uma floresta secundária, em Rondônia. Boletim do Museu Paraense Emílio Goeldi, Botânica 5: 145–162.Google Scholar
  21. Matos, F. D. A. & I. L. Amaral. 1999. Análise ecológica de um hectare em floresta ombrófila densa de terra-firme, Estrada da Várzea, Amazônas, Brasil. Acta Amazônica 29: 365–379.CrossRefGoogle Scholar
  22. Milliken, W., R. P. Miller, S. R. Pollard, & E. V. Wandelli. 1992. The ethnobotany of the Waimiri Atroari Indians of Brazil. Royal Botanic Gardens, Kew.Google Scholar
  23. Miranda, I. S. 2000. Análise florística e estrutural da vegetação lenhosa do Rio Comemoração, Pimenta Bueno, Rondônia, Brasil. Acta Amazônica 30: 393–422.CrossRefGoogle Scholar
  24. Mori, S. A. & collaborators. 1987. The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana. Memoirs of The New York Botanical Garden 44: 1–190.Google Scholar
  25. -----, B. V. Rabelo, C.-H. Tsou & D. Daly. 1989. Composition and structure of an eastern Amazonian forest at Camaipi, Amapá, Brazil. Boletim do Museu Paraense Emílio Goeldi, Botânica 5: 3–18.Google Scholar
  26. Muniz, F. H., O. Cesar, & R. Monteiro. 1994. Aspectos florísticos, quantitativos e comparativos de vegetação arbórea da Reserva Floresta do Sacavém, São Luis, Maranhão (Brasil). Acta Amazônica 24: 189–218.CrossRefGoogle Scholar
  27. Nelson, B. W., C. A. Cid Ferreira, M. F. Silva, & M. L. Kawasaki. 1990. Endemism centers, refugia, and botanical collection density in Brazilian Amazonia. Nature 345: 714–716.CrossRefGoogle Scholar
  28. de Oliveira, A. A. 1997. Diversidade, estrutura e dinâmica do componente arbóreo de uma floresta de terra firme de Manaus, Amazonas. Ph.D. Dissertation, Universidade de São Paulo.Google Scholar
  29. ----- & D. C. Daly. 1999. Geographic distribution of tree species occurring in the region of Manaus, Brazil: Implications for regional diversity and conservation. Biodiversity and Conservation 8: 1245–1259.CrossRefGoogle Scholar
  30. Pires, J. M. & H. M. Koury. 1958. Estudo de um trecho de mata de várzea próximo de Belém. Boletim Técnico do Instituto Agronômico do Norte 36: 3–44.Google Scholar
  31. Rankin-de-Merona, J. M., G. T. Prance, R. W. Hutching, M. F. Silva, W. A. Rodrigues, & M. E. Uehling. 1992. Preliminary results of a large-scale tree inventory of upland rain forest in the central Amazon. Acta Amazônica 22: 493–534.CrossRefGoogle Scholar
  32. Rodrigues, W. A. 1963. Estudo de 2.6 hectares de mata de terra firme da Serra do Navio, Território do Amapá. Boletim do Museu Paraense Emílio Goeldi, Botânica 19: 1–22.Google Scholar
  33. Salomão, R. P. 1991(1993). Uso de parcelas permanentes para estudos da vegetação florestal. I. Município de Marabá, Pará. Boletim do Museu Paraense Emílio Goeldi, Botânica 7: 543–604.Google Scholar
  34. ----- & P. L. B. Lisboa. 1988. Análise ecológica da vegetação de uma floresta pluvial tropical de terra firme, Rondônia. Boletim do Museu Paraense Emílio Goeldi, Botânica 4: 195–234.Google Scholar
  35. ----- & N. A. Rosa. 1989. Análise da vegetação de floresta pluvial tropical de terra firme, pelo método dos quadrantes: Serra Norte, Carajás, PA. Acta Botânica Brasílica 2(1 Suppl): 27–42.Google Scholar
  36. Schulz, J. P. 1960. Ecological studies on rain forest in northern Suriname. Mededeelingen van het Botanisch Museum en Herbarium van de Rijks Universiteit te Utrecht. Utrecht 163: 1–267.Google Scholar
  37. Silva, K. E., S. V. Martins, C. A. A. S. Ribeiro, N. T. Santos, C. P. Azevedo, F. D. A. Matos & I. L. Amaral. 2011. Floristic composition and similarity of 15 hectares in Central Amazon, Brazil. Revista de Biologia Tropical 59: 1927–1938.PubMedGoogle Scholar
  38. Spichiger, R., P.-A. Loizeau, C. Latour & G. Barriera. 1996. Richness of a south-western [sic] Amazonian forest (Jenaro Herrera, Peru, 73°40’W/4°54’S). Candollea 51: 559–577.Google Scholar
  39. ter Steege, H., H. N. Pitman, D. Sabatier, H. Castellanos, P. van der Hout, D. C. Daly, M. Silveira, O. Phillips, R. Vásquez, T. van Andel, J. Duivenvoorden, A. A. Oliveira, R. Ek, R. Lilwah, R. Thomas, J. van Essen, C. Baider, P. Maas, S. Mori, J. Terborgh, P. V. Nuñez, H. Mogollón & W. Morawetz. 2003. A spatial model of tree α-diversity and -density for the Amazon. Biodiversity and Conservation 12: 2255–2276. Google Scholar
  40. -----, H., N. C. A. Pitman, O. L. Phillips, J. Chave, D. Sabatier, A. Duque, J.-F. Molino, M.-F. Prévost, R. Spichiger, H. Castellanos, P. von Hildebrand & R. Vásquez. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443: 444–447.CrossRefPubMedGoogle Scholar
  41. ----- et al. [multiple authors]. 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 [DOI:  https://doi.org/10.1126/science.1243092].CrossRefPubMedGoogle Scholar
  42. Valencia, R., H. Balslev, & G. P. Y. Miño. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3: 21–28.CrossRefGoogle Scholar
  43. Vásquez M. R. & O. L. Phillips 2000. Allpahuayo: Floristics, structure, and dynamics of a high-diversity forest in Amazonian Peru. Annals of the Missouri Botanical Garden 87: 499–527.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2018

Authors and Affiliations

  1. 1.The New York Botanical GardenBronxUSA

Personalised recommendations