Kew Bulletin

, 74:3 | Cite as

Structure and abnormalities in cones of the Wollemi pine (Wollemia nobilis)

  • Veit M. DörkenEmail author
  • Paula J. Rudall


Reproductive structures of both genders of Wollemia nobilis were investigated, including both wild-type and teratological cones. Typically, both pollen cones and seed cones in this species are terminal on first order branches. At maturity, wild-type pollen cones are pendulous and cylindrical; wild-type seed cones are broad and ellipsoidal in shape. The teratological structures consisted of a basal region that resembled a typical fertile seed cone, and an apical proliferation that terminated in a well-developed pollen cone, resulting in a ‘bisexual’ unit. The proximal seed cone and the distal pollen cone were separated by a sterile region that represents an elongation of the cone axis. Of a total of 14 anomalous bisexual units investigated, all had the same bauplan. Such an arrangement of basal ovulate and distal staminate reproductive structures in a teratological conifer cone has previously not been reported for Wollemia. This topology is 'inside-out' with respect to most other reported anomalous bisexual conifer cones, which possess proximal staminate and distal ovulate structures. We discuss these spontaneous abnormalities in the broader context of understanding the homologies of seed-plant reproductive structures. The patterning of conifer cones is apparently highly labile, perhaps related to the extended cone axis and relatively long developmental duration.

Key Words

Araucariaceae bisexuality conifers evolution morphology teratology 



We thank Richard Bateman for critically reading an early version of the manuscript and Michael Laumann and Paavo Bergmann (Electron Microscopy Center, Department of Biology, University of Konstanz, Germany) for technical support (SEM).


  1. Bateman, R. M., Hilton, J. & Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the ´top-down´ and ´bottom-up´ approaches to inferring the likely characteristics of the first flowers. J. Exp. Bot. 57: 3471 – 3503.CrossRefGoogle Scholar
  2. Bateman, R. M.____ & Rudall, P. J. (2006). The Good, the Bad and the Ugly: using spontaneous terata to distinguish the possible from the impossible in orchid floral evolution. Aliso 22: 481 – 496.Google Scholar
  3. Bateman, R. M.____Rudall, P. J., ____ & Hilton, J. (2011). Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relevance to the origin of the angiosperm flower. In: L. Wanntorp & L. P. Ronse DeCraene (eds), Flowers on the tree of life, pp. 8 – 48. Cambridge University Press, Cambridge.Google Scholar
  4. Carlsbecker, A., Sundström, J. F., Englund, M., Uddenberg, D., Izquierdo, L., Kvarnheden, A., Vergara-Silva, F. & Engström, P. (2013). Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytol. 200: 261 – 275.CrossRefGoogle Scholar
  5. Coen, E. S. & Meyerowitz, E. M. (1991). The war of the whorls: genetic interactions controlling flower development. Nature 353: 31 – 37.CrossRefGoogle Scholar
  6. Caron, G. E. & Powell, G. R. (1991). Proliferated seed cones and pollen cones in young black spruce. Trees 5: 65 – 74.CrossRefGoogle Scholar
  7. Chambers, T. C., Drinnan, A. N. & McLoughlin, S. (1998). Some morphological features of Wollemi pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. Int. J. Pl. Sci. 159: 160 – 171.CrossRefGoogle Scholar
  8. Coulter, J. M. & Chamberlain, C. J. (1917). Morphology of Gymnosperms, 2nd ed. University of Chicago Press, Chicago.Google Scholar
  9. Dörken, V. M. (2011). Proliferating seed cones in Metasequoia glyptostroboides Hu & Cheng (Cupressaceae s.l., Coniferales) elucidate the evolution of seed cones and ovules in Cupressaceae s.l. Feddes Repert. 122: 409 – 420.CrossRefGoogle Scholar
  10. Dörken, V. M.____ (2017). Pollen cone anomalies in Pinus sylvestris and Tsuga canadensis (Pinaceae): can they give new insights in the evolution of microsporangiophores in conifers? Bull. Cupressus Conservation Proj. 6: 30 – 40.Google Scholar
  11. Dörken, V. M.____ & Jagel, A. (2014). Orientation and withdrawal of pollination drops in the Cupressaceae s. l. (Coniferales). Flora 209: 34 – 44.Google Scholar
  12. Dörken, V. M.____ & Nimsch, H. (2016). Some new aspects about the evolution of pollen cones and perisporangiate microsporangiophores in Taxaceae. Bull. Cupressus Conservation Proj. 5: 3 – 21.Google Scholar
  13. Dörken, V. M.Nimsch, H.____, ____ & Jagel, A. (2017). Morphology, anatomy and morphogenesis of seed cones of Cupressus vietnamensis (Cupressaceae) and its taxonomic and systematic implications. Flora 230: 47 – 56.Google Scholar
  14. Dörken, V. M.Nimsch, H.____ & Rozynek, B. (2013). Proliferated megasporangiate strobili of Zamia furfuracea (Zamiaceae, Cycadales) and its possible evolutionary implications for the origin of cycad megasporophylls. Palaeodiv. 6: 135 – 147.Google Scholar
  15. Dörken, V. M.Nimsch, H.____ & KLK;Rudall, P. J. (2018). Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in Glyptostrobus pensilis. PeerJ 2018: e4948.Google Scholar
  16. Dörken, V. M.Nimsch, H.____ & Stützel, T. (2011a). Pflanzliche Missbildungen und deren Interpretation am Beispiel von Sciadopitys verticillata Siebold & Zucc. (Sciadopityaceae) mit intermediär gestalteten Kladodien. Mitt. Deutsch. Dendrol. Ges. 96: 125 – 149.Google Scholar
  17. Dörken, V. M.Nimsch, H.____ & Stützel, T.____ (2011b). Morphology and anatomy of anomalous cladodes in Sciadopitys verticillata Siebold & Zucc. (Sciadopityaceae). Trees (2011) 25: 199 − 213.Google Scholar
  18. Dörken, V. M.Nimsch, H.____, Zhang, Z. X., Mundry, I. B. & Stützel, T. (2011). Morphology and anatomy of male reproductive structures in Pseudotaxus chienii (W.C. Cheng) W.C. Cheng (Taxaceae). Flora 206: 444 – 450.Google Scholar
  19. Eckenwalder, J. E. (2009). Conifers of the world. Timber Press, Portland.Google Scholar
  20. Escapa, I. H. & Catalano, S. A. (2013). Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. Int. J. Plant Sci. 174: 1153 – 1170.CrossRefGoogle Scholar
  21. Farjon, A. (2008). A natural history of conifers. Timber Press, Portland.Google Scholar
  22. Farjon, A.____ (2010). A handbook of the world’s conifers, Vol. I & II. Brill, Leiden.Google Scholar
  23. Farjon, A.____ & Garcia, S. O. (2003). Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. Amer. J. Bot. 90: 8 – 16.Google Scholar
  24. Florin, R. (1951). Evolution in cordaites and conifers. Acta Horti Bergiani 17: 7 – 37.Google Scholar
  25. Florin, R.____ (1954). The female reproductive organs of conifers and taxads. Biol. Rev. 29: 367 – 389.Google Scholar
  26. Gadek, A. P., Alpers, D., Heslewood, M. M. & Quinn, C. J. (2000). Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Amer. J. Bot. 87: 1044 – 1057.CrossRefGoogle Scholar
  27. Gerlach, D. (1984). Botanische Mikrotomtechnik, eine Einführung, 2nd ed. Thieme, Stuttgart.Google Scholar
  28. Gerstberger, P. & Leins, P. (1978). Rasterelektronenmikroskopische Untersuchungen an Blütenknospen von Physalis philadelphia (Solanaceae). Ber. Deutsch. Bot. Ges. 91: 381 – 387.Google Scholar
  29. Gilmore, S. & Hill, K. D. (1997). Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275 – 291.CrossRefGoogle Scholar
  30. Groth, E., Tandre, K., Engström, P. & Vergara-Silva, F. (2013). AGAMOUS subfamily MADS-box genes and the evolution of seed cone morphology in Cupressaceae and Taxodiaceae. Evol. Dev. 13: 159 – 170.CrossRefGoogle Scholar
  31. Jagel, A. (2002). Morphologische und morphogenetische Untersuchungen zur Systematik und Evolution der Cupressaceae s.l. (Zypressengewächse). PhD-thesis, Ruhr-University Bochum.Google Scholar
  32. Jagel, A.____ & Dörken, V. M. (2014). Morphology and morphogenesis of the seed cones of the Cupressaceae, I: Cunninghamioideae, Athrotaxioideae, Taiwanioideae, Sequoioideae, Taxodioideae. Bull. Cupressus Conservation Proj. 3: 99 – 121.Google Scholar
  33. Jagel, A.____& Dörken, V. M.____ (2015a). Morphology and morphogenesis of the seed cones of the Cupressaceae, II Cupressoideae. Bull. Cupressus Conservation Proj. 4: 51 – 78.Google Scholar
  34. Jagel, A.____ & Dörken, V. M.____ (2015b). Morphology and morphogenesis of the seed cones of the Cupressaceae, III Callitroideae. Bull. Cupressus Conservation Proj. 4: 91 – 108.Google Scholar
  35. Jagel, A.Dörken, V. M.____ & Stützel, T. (2001). Zur Abgrenzung von Chamaecyparis Spach und Cupressus L. (Cupressaceae) und die systematische Stellung von Cupressus nootkatensis D. Don [= Chamaecyparis nootkatensis (D. Don) Spach]. Feddes Repert. 112: 179 – 229.Google Scholar
  36. Jagel, A.Dörken, V. M.____ & Stützel, T.____ (2003). On the occurrence of non-axillary ovules in Tetraclinis articulata (Vahl) Mast. (Cupressaceae s.str.). Feddes Repert. 114: 497 – 507.Google Scholar
  37. Jones, W. G., Hill, K. D. & Allen, J. M. (1995). Wollemia nobilis, a new living Australian genus in the Araucariaceae. Telopea 6: 173 – 176.CrossRefGoogle Scholar
  38. Kunzmann, L., Mohr, B. A. R. & Bernardes-de-Oliveira, M. E. C. (2004). Gymnosperms from the Lower Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Mitt. Mus. Nat.kd. Berl., Geowiss Reihe 7: 155 – 174.Google Scholar
  39. Lanner, R. M. (1966). An unusual bisexual Agathis cone. Pacific Sci. 20: 282 – 283.Google Scholar
  40. Lemoine-Sebastian, C. (1967). Appareil reproducteur male de Juniperus. Trav. Lab. Forest. Toulouse 1: 1 – 35.Google Scholar
  41. Masters, M. T. (1869). Vegetable Teratology. Ray Society, London.Google Scholar
  42. McLoughlin, S. & Vajda, V. (2005). Ancient wollemi pines resurgent. Amer. Sci. 93: 540 – 547.CrossRefGoogle Scholar
  43. Moyroud, E., Kusters, E., Monniaux, M., Koes, R. & Parcy, F. (2010). LEAFY blossoms. Trends Pl. Sci. 15: 346 – 352.CrossRefGoogle Scholar
  44. Moyroud, E.____, Monniaux, M., Thévenon, E., Dumas, R., Scutt, C. P., Frohlich, M. W. & Parcy, F. (2017). A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol. 216: 469 – 481.Google Scholar
  45. Mundry, I. (2000). Morphologische und morphogenetische Untersuchungen zur Evolution der Gymnospermen. Biblioth. Bot. 152: 1 – 90.Google Scholar
  46. Mundry, I.____ & Mundry, M. (2001). Male cones in Taxaceae s.l. — an example of Wettstein´s pseudanthium concept. Pl. Biol. 3: 405 – 416.Google Scholar
  47. Neubauer, H. F. (1976). Über Zapfen und Zapfenmißbildungen bei Metasequoia. Bot. Jahrb. Syst. 95: 321 – 326.Google Scholar
  48. Owens, J. N. (2008). The reproductive biology of western larch. Inland Empire Tree Improvement Cooperative, Victoria (BC).Google Scholar
  49. Page, C. N. (1990). Gymnosperms. In: K. Kubitzki (ed.), Families and Genera of Vascular Plants, Vol. 1: 279 – 391. Springer, Berlin, Heidelberg.Google Scholar
  50. Peakall, R., Ebert, D., Scott, L. J. & Meagher, P. F. (2003). Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molec. Ecol. 12: 2331 – 2343.CrossRefGoogle Scholar
  51. Rudall, P. J. & Bateman, R. M. (2003). Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Pl. Sci. 8: 76 – 82.CrossRefGoogle Scholar
  52. Rudall, P. J.____ & Bateman, R. M.____ (2010). Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. Phil. Trans. Roy. Soc. B 365: 397 – 409.Google Scholar
  53. Rudal, P. J.Bateman, R. M.____, Remizowa, M. V., Prenner, G., Prychid, C. J., Tuckett, R. E. & Sokoloff, D. D. (2009). Non-flowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae, and its bearing on the origin of the flower. Amer. J. Bot. 96: 67 – 82.Google Scholar
  54. Rudal, P. J.Bateman, R. M.____, Hilton, J., Vergara-Silva, F. & Bateman, R. M. (2011). Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends Pl. Sci. 16: 151 – 159.Google Scholar
  55. Schooley, H. O. (1967). Aberrant ovulate cones in balsam fir. Forest Sci. 13: 102 – 104.Google Scholar
  56. Schulz, C., Jagel, A. & Stützel, T. (2003). Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s. l. Flora 198: 161 – 177.CrossRefGoogle Scholar
  57. Schulz, C.____, Klaus, K. V., Knopf, P., Mundry, M., Dörken, V. M. & Stützel, T. (2014). Male cone evolution in conifers: not all that simple. Amer. J. Pl. Sci. 5: 2842 – 2857.Google Scholar
  58. Schulz, C.____ & Stützel, T. (2007). Evolution of taxodiaceous Cupressaceae. Org. Divers Evol 7: 124 – 135.Google Scholar
  59. Stockey, R. A. (1982). The Araucariaceae: an evolutionary perspective. Rev. Palaeobot. Palynol. 37: 133 – 154.CrossRefGoogle Scholar
  60. Stützel, T. & Röwekamp, I. (1997). Bestäubungsbiologie bei Nacktsamern. Palmengarten 61: 100 – 110.Google Scholar
  61. Stützel, T.____ & Röwekamp, I.____ (1999). Bestäubungsbiologie bei Nacktsamern (Gymnospermen). In: G. Zizka & S. Schneckenburger, Blütenbiologie - faszinierendes Miteinander von Pflanzen und Tieren. Kleine Senckenberg Reihe 33: 107 – 117.Google Scholar
  62. Takaso, T. & Tomlinson, P. B. (1992). Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae, Coniferales). Bot. J. Linn. Soc. 109: 15 – 37.CrossRefGoogle Scholar
  63. Tavares, R., Cagnon, M., Negrutiu, I. & Mouchiroud, D. (2010). Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms. BMC Evol. Biol. 10: 240. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Theissen, G. & Becker, A. (2004). Gymnosperm orthologues of class B floral homeotic genes and their impact on understanding flower origin. Crit. Rev. Pl. Sci. 23: 129 – 148.CrossRefGoogle Scholar
  65. Tosh, K. J. & Powell, G. R. (1986). Proliferated, bisporangiate, and other atypical cones occurring on young, plantation-grown Larix laricina. Canad. J. Bot. 64: 469 – 475.CrossRefGoogle Scholar
  66. Trueman, S. J., Pegg, G. S. & King, J. (2007). Domestication for conservation of an endangered species: the case of the Wollemi Pine. Tree & Forestry Sci. Tech. 1: 1 – 10.Google Scholar
  67. Uddenberg, D., Akhter, S., Ramachandran, P., Sundström, J. F. & Carlsbecker, A. (2015). Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology. Front. Pl. Sci. 6: 970. CrossRefGoogle Scholar
  68. Wilde, M. H. (1975). A new interpretation of microsporangiate cones in Cephalotaxaceae and Taxaceae. Phytomorphol. 25: 434 – 450.Google Scholar
  69. Worsdell, W. C. (1916). The principles of plant teratology. Ray Society, London.Google Scholar
  70. Zhang, P., Tan, H. T. W., Pwee, K. H. & Kumar, P. P. (2004). Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 37: 566 – 577.CrossRefGoogle Scholar

Copyright information

© The Board of Trustees of the Royal Botanic Gardens, Kew 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzKonstanzGermany
  2. 2.Royal Botanic Gardens, KewRichmondUK

Personalised recommendations