Advertisement

Kew Bulletin

, 69:9497 | Cite as

A preliminary phylogenetic analysis of Eugenia (Myrtaceae: Myrteae), with a focus on Neotropical species

  • Fiorella Fernanda Mazine
  • Vinicius Castro Souza
  • Marcos Sobral
  • Félix Forest
  • Eve Lucas
Article

Summary. A first phylogenetic hypothesis of Neotropical Eugenia, including associated genera and species from Africa and the Pacific was produced using DNA sequence data from the nuclear (ITS, ETS) and plastid (psbA-trnH) genomes. This analysis aimed to investigate the validity of the currently recognised infrageneric groups within Eugenia as well as suites of supporting morphological characters, to determine relationships between groups and produce a framework for future taxonomic research. A total of 70 samples were analysed and the resulting topology confirms the inclusion of Neotropical genera Calycorectes, Hexachlamys, Phyllocalyx and Stenocalyx in Eugenia to preserve the monophyly of Eugenia. Within Eugenia s.l., nine clades are identified as morphologically diagnosable groups and are assigned to two genera (Eugenia and Myrcianthes). Their morphological synapomorphies are discussed. Some lineages identified by previous classifications are also supported. Preliminary phylogenetic results presented here combined with morphology point towards the need for a new subgeneric classification for Eugenia.

Key Words

Brazil Calycorectes Hexachlamys Mata Atlântica Phyllocalyx South America Stenocalyx 

Notes

Acknowledgements

This work would not have been possible without support in the field from Ony Rodrigues de Campos, Fernando Antonio Capelo, Cassia Sakuragui, Joel da Silva, Daniela Sampaio, Wellington Forster, Andréa Onofre Araújo, and Alexandre Romariz Duarte. We are very grateful to the following generous field collectors: Bruce Holst and Daniela Zappi. We thank IBAMA for granting permits and FAPESP (Brazil) (Process 2002/01637-8), KLARF (Mellon Foundation) and the Royal Society, London for financial support.

References

  1. Barroso, G. M., Peixoto, A. L., Costa, C. G., Ichaso, C. L. F., Guimarães, E. F. & Lima, H. C. (1984). Sistemática das Angiospermas do Brasil. Vol. 2. Universidade Federal de Viçosa.Google Scholar
  2. Bello, M. A., Bruneau, M., Forest, F. & Hawkins, J. A. (2009). Elusive relationships within order fabales: phylogenetic analyses using matK and rbcl sequence data. Syst. Bot. 34 (1): 102 – 114.CrossRefGoogle Scholar
  3. Bentham, G. (1868). Notes on Myrtaceae. J. Linn. Soc., Bot. 10: 101 – 166.CrossRefGoogle Scholar
  4. Berg, O. (1856). Revisio Myrtacearum Americae. Linnaea 27: 1 – 472.Google Scholar
  5. ____ (1857). Myrtaceae. In: C. F. P. von Martius (ed.), Flora Brasiliensis 14: 1 – 655. Sumptibus J. G. Cottae, Stuttgartiae et Tubingae.Google Scholar
  6. Biffin, E., Harrington, M. G., Crisp, M. D., Craven, L. A. & Gadek, P. A. (2007). Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Molec. Phylogenet. Evol. 43: 124 – 139.PubMedCrossRefGoogle Scholar
  7. ____, Lucas, E. J., Caven, L. A., Costa, I. R., Harrington, M. R. & Crisp, M. D. (2010). Evolution of exceptional species richness among lineages of fleshy fruited Myrtaceae. Ann. Bot. 106: 79 – 93.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Buerki, S., Forest, F., Acevedo-Rodriguez, P., Callmander, M. W., Nylander, J. A. A., Harrington, M., Sanmartín, I., Küpfer, P. & Alvarez, N. (2009). Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Molec. Phylogenet. Evol. 51: 238 – 258.PubMedCrossRefGoogle Scholar
  9. Chase, M. W., De Bruijn, A. Y., Cox, A. V., Reeves, G., Rudall, P. J., Johnson, M. A. T. & Eguiarte, L. E. (2000). Phylogenetics of Asphodelaceae Asparagales: an analysis of plastid rbcL and trnL-F DNA sequences. Ann. Bot. 86: 935 – 951.CrossRefGoogle Scholar
  10. Cruz, F., Turchetto-Zolet, A. C., Veto, N., Mondin, C. A., Sobral, M., Almerão, M. & Margis, R. (2013). Phylogenetic analysis of the genus Hexachlamys (Myrtaceae) based on plastid and nuclear DNA sequences and their taxonomic implications. Bot. J. Linn. Soc. doi:  10.1111/boj12036 Google Scholar
  11. De Candolle, A. P. (1828). Myrtaceae. In: A. P. de Candolle (ed.), Prodromus systematis naturalis regni vegetabilis 3: 207 – 296. Treuttel et Würtz, Paris.Google Scholar
  12. Endress, P. K. (2010). Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48 (4): 225 – 239.CrossRefGoogle Scholar
  13. Felsenstein, J. (1985). Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39 (4): 783 – 791.CrossRefGoogle Scholar
  14. Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406 – 416.CrossRefGoogle Scholar
  15. Grifo, F. T. (1992). A Revision of Myrcianthes Berg (Myrtaceae). PhD thesis. Cornell University, Ithaca.Google Scholar
  16. Hamilton, M. B. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec. Ecol. 8: 521 – 523.Google Scholar
  17. Holst, B. K., Landrum, L. & Grifo, F. (2003). Myrtaceae. In: P. E. Berry, K. Yatskievych & B. Holst (eds), Flora of the Venezuelan Guayana 7: 1 – 99. New York Botanical Garden, New York.Google Scholar
  18. Huelsenbeck J. P. & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754 – 755.PubMedCrossRefGoogle Scholar
  19. Kausel E. (1956). Beitrage zur Systematik der Myrtaceen. Ark. Bot. 2 (3): 491 – 516.Google Scholar
  20. ____ (1962). Zur Systematik von Pilothecium Kiaersk. Ark. Bot. 4 (10): 401 – 405.Google Scholar
  21. ____ (1966). Lista de las Mirtáceas y Leptospermáceas argentinas. Lilloa 32: 323 – 368.Google Scholar
  22. Kawasaki, M. L. (1984). A família Myrtaceae na Serra do Cipó, Minas Gerais, Brasil. Ms diss. Instituto de Biociências, Universidade de São Paulo.Google Scholar
  23. ____ (1989). Flora da Serra do Cipó, Minas Gerais: Myrtaceae. Bol. Bot. Univ. São Paulo 11: 121 – 170.Google Scholar
  24. Kelchner, S. A. (2000). The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann. Missouri Bot. Gard. 87 (4): 482 – 498.CrossRefGoogle Scholar
  25. Kiaerskou, H. (1893). Enumeratio Myrtacearum brasiliensium. In: E. Warming (ed.), Symbolae ad Floram Brasiliae Centralis Cognoscendam. Vidensk. Meddel. Naturhist. Foren. Kjøbenhavn 39: 1 – 200.Google Scholar
  26. Landrum, L. R. (1981). A monograph of the genus Myrceugenia (Myrtaceae). Fl. Neotrop. Monogr. 29: 1 – 137.Google Scholar
  27. ____ (1986). Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Fl. Neotrop. Monogr. 45: 72 – 115.Google Scholar
  28. ____ & Kawasaki, M. L. (1997). The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys. Brittonia 49 (4): 508 – 536.CrossRefGoogle Scholar
  29. Legrand, C. D. & Klein, R. M. (1972). Mirtáceas: Calycorectes (Fasc. Mirt.). In: R. Reitz (ed.), Flora Ilustrada Catarinense: 553 – 569. Itajaí, Santa Catarina.Google Scholar
  30. ____ & ____ (1977). Mirtáceas: Campomanesia, Feijoa, Britoa, Myrrhinium, Hexachlamys, Siphoneugena, Myrcianthes, Neomitranthes, Psidium (Fasc. Mirt.). In: R. Reitz (ed.), Flora Ilustrada Catarinense: 573 – 730. Itajaí, Santa Catarina.Google Scholar
  31. Lucas, E. J., Harris, S. A., Mazine, F. F., Belsham, S. R., NicLughadha, E. M., Telford, A., Gasson, P. E. & Chase, M. W. (2007). Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56: 1105 – 1128.CrossRefGoogle Scholar
  32. ____, Matsumoto, K., Harris, S. A., NicLughadha, E. M., Benardini, B. & Chase, M. W. (2011). Phylogenetics, Morphology, and Evolution of the Large Genus Myrcia s.l. (Myrtaceae). Int. J. Pl. Sci. 172 (7): 915 – 934.CrossRefGoogle Scholar
  33. McNeill, J., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J., Prud’Homme van Heine, W. F., Smith, G. F., Wiersema, J. H. & Turland, N. J. (2012). International Code of Botanical Nomenclature (Melbourne Code). Regnum Veg. 154.Google Scholar
  34. Maddison, D. R. (1991). The discovery and importance of multiple islands of most parsimonious trees. Syst. Zool. 40: 315 – 328.CrossRefGoogle Scholar
  35. Marchiori, J. N. C. & Sobral, M. (1997). Dendrologia das angiospermas: Myrtales. Editora da UFSM, Santa Maria.Google Scholar
  36. Mattos, J. R. (1983). Myrtaceae do Rio Grande do Sul. Roessleria 5: 169 – 359.Google Scholar
  37. ____ (1995). Novidades taxonômicas em Myrtaceae IX, Hexachlamys. Loefgrenia 105: 1 – 3.Google Scholar
  38. ____ (2005). Considerações sobre Calycorectes Berg. Loefgrenia 120: 1 – 11.Google Scholar
  39. McVaugh, R. (1956). Tropical American Myrtaceae. Notes on generic concepts and description of previously unrecognized species. Fieldiana, Bot. 29 (3): 145 – 228.Google Scholar
  40. ____ (1958). Flora of Peru: Myrtaceae. Field Mus. Public. Bot. 13 (4): 569 – 818.Google Scholar
  41. ____ (1968). The Genera of American Myrtaceae: An Interim Report. Taxon 17: 354 – 418.CrossRefGoogle Scholar
  42. Niedenzu, F. (1893). Myrtaceae. In: H. G. A. Engler & K. A. E. Prantl (eds), Die Natürlichen Pflanzenfamilien 3 (7): 57 – 105. W. Engelmann, Leipzig.Google Scholar
  43. Nylander, J. A. A. (2004). MrModeltest2. Version 2. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/.
  44. Oliveira-Filho, A. T. & Fontes, M. A. L. (2000). Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica 32 (4b): 793 – 810.CrossRefGoogle Scholar
  45. Prenner, G., Vergara-Silva, F. & Rudall, P. J. (2009). The key role of morphology in modeling inflorescence architecture. Trends Plant Sci. 14: 302 – 309.PubMedCrossRefGoogle Scholar
  46. Proença, C. E. B. (1991). The reproductive biology and taxonomy of the Myrtaceae of the Distrito Federal (Brazil). PhD diss. Department of Biology and Preclinical Medicine, University of St. Andrews.Google Scholar
  47. Rambaut, A. (2006). FigTree. http://tree.bio.ed.ac.uk/software/figtree/. Accessed March 2009.
  48. ____ & Drummond, A. J. (2007). Tracer. Version 1.4.http://beast.bio.ed.ac.uk/Tracer.
  49. Romagnolo, M. B. & Souza, M. C. (2004). Os gêneros Calycorectes O. Berg, Hexachlamys O. Berg, Myrcianthes O. Berg, Myrciaria O. Berg e Plinia O. Berg (Myrtaceae) na planície alagável do alto rio Paraná, Brasil. Acta Bot. Bras. 18 (3): 613 – 627.CrossRefGoogle Scholar
  50. Ronquist, F., Huelsenbeck, J. P. & van der Mark, P. (2005). MrBayes 3.1 manual. http://mrbayes.csit.fsu.edu/manual.php.
  51. Rotman, A. D. (1982). Los géneros Calycorectes, Hexachlamys, Myrciaria, Paramyrciaria, Plinia y Siphoneugena en la flora argentina. Darwiniana 24: 157 – 185.Google Scholar
  52. Sánchez-Vindas, P. E. (1990). Myrtaceae. In: A. Gomez-Pompa (ed.), Flora de Veracruz 1 – 146. Instituto de Ecologia, Xalapa, Veracruz.Google Scholar
  53. Simmons, M. P. & Ochoterena, H. (2000). Gaps as Characters in Sequence-Based Phylogenetic Analyses. Syst. Biol. 49 (2): 369 – 381.PubMedCrossRefGoogle Scholar
  54. Soares-Silva, L. H. (2000). A família Myrtaceae: subtribos Myrciinae e Eugeniinae na bacia hidrográfica do rio Tibagi, estado do Paraná, Brasil. PhD diss. Instituto de Biologia, Universidade Estadual de Campinas.Google Scholar
  55. Sobral, M. (2003). A família Myrtaceae no Rio Grande do Sul. Editora Unisinos, São Leopoldo.Google Scholar
  56. ____, Proença, C., Souza, M., Mazine, F. F. & Lucas, E. (2013). Myrtaceae. In: R. C. Forzza (ed.), Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. (http://floradobrasil.jbrj.gov.br/2010/FB010781).
  57. Souza, M. C. & Morim, M. P. (2008). Subtribos Eugeniinae O. Berg e Myrtinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Bot. Bras. 22 (3): 652 – 683.CrossRefGoogle Scholar
  58. Sun, Y., Skinner, D. Z., Liang, G. H. & Hulbert, S. H. (1994). Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89: 26 – 32.PubMedCrossRefGoogle Scholar
  59. Swofford, D. L. (2002). PAUP; phylogenetic analysis using parsimony (and other methods), version 4.0b2. Sinauer, Sunderland, Massachusets, USA.Google Scholar
  60. Thornhill, A. H., Popple, L. W., Carter, R. J., Ho, S. Y. W. & Crisp, M. D. (2012). Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Molec. Phylogenet. Evol. 63: 15 – 27.PubMedCrossRefGoogle Scholar
  61. Urban, I. (1895). Additamenta ad cognitionem florae Indiae Occidentalis. Bot. Jahrb. Syst. 19: 562 – 681.Google Scholar
  62. Van der Merwe, M. M., van der Wyk, A. E. & Botha, A. M. (2005). Molecular phylogenetic analysis of Eugenia L. (Myrtaceae), with emphasis on southern African taxa. Pl. Syst. Evol. 251: 21 – 34.CrossRefGoogle Scholar
  63. Van Wyk, A. E. (1982). A note on the seed morphology of the genus Eugenia (Myrtaceae) in southern Africa. S. African J. Bot. 46: 115 – 119.Google Scholar
  64. ____ (1985). The genus Eugenia (Myrtaceae) in southern Africa: the structure and taxonomic value of the bark. S. African J. Bot. 51: 157 – 180.Google Scholar
  65. ____ & Botha, R. (1984). The genus Eugenia (Myrtaceae) in southern Africa: ontogeny and taxonomic value of the seed. S. African J. Bot. 3: 63 – 80.Google Scholar
  66. ____ & Dedekind, I. (1985). The genus Eugenia (Myrtaceae) in southern Africa: morphology and taxonomic value of pollen. S. African J. Bot. 51: 371– 378.Google Scholar
  67. ____ & Lowrey, T. K. (1988). Studies on the reproductive biology of Eugenia L. (Myrtaceae) in southern Africa. Monogr. Syst. Bot. Missouri Bot. Gard. 25: 279 – 293.Google Scholar
  68. ____, Robbertse, P. J. & Kok, P. D. F. (1982). The genus Eugenia (Myrtaceae) in southern Africa: the structure and taxonomic value of stomata. Bot. J. Linn. Soc. 84: 41 – 56.CrossRefGoogle Scholar
  69. Verdcourt, B. (1999). The genus Eugenia L. (Myrtaceae) in East Africa. Kew Bull. 54: 41 – 62.CrossRefGoogle Scholar
  70. Weberling, F. (1988). The architecture of inflorescences in the Myrtales. Ann. Missouri Bot. Gard. 75 (1): 226 – 310.CrossRefGoogle Scholar
  71. ____ (1992). Morphology of flowers and inflorescences. Cambridge University Press, Cambridge.Google Scholar
  72. Wilson, P. G., O’Brien, M. M., Heslewood, M. M. & Quinn, C. J. (2005). Relationships within Myrtaceae sensu lato based on a matK phylogeny. Pl. Syst. Evol. 251: 3 – 19.CrossRefGoogle Scholar
  73. WCSP (World Checklist of Selected Plant Families) (2013). World checklist of selected plant families. http://www.kew.org/wcsp/myrtaceae. Accessed June 5, 2013.
  74. Wright, S. D., Yong, C. G., Wichman, S. R., Dawson, J. W. & Gardner, R. C. (2001). Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS + ETS). J. Biogeogr. 28: 769 – 774.CrossRefGoogle Scholar

Copyright information

© The Board of Trustees of the Royal Botanic Gardens, Kew 2014

Authors and Affiliations

  • Fiorella Fernanda Mazine
    • 1
  • Vinicius Castro Souza
    • 2
  • Marcos Sobral
    • 3
  • Félix Forest
    • 4
  • Eve Lucas
    • 5
  1. 1.Universidade Federal de São CarlosSorocabaBrazil
  2. 2.Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloPiracicabaBrazil
  3. 3.DCNAT - UFSJSão João del-ReiBrazil
  4. 4.Jodrell LaboratoryRoyal Botanic GardensKew, Richmond, SurreyUK
  5. 5.HerbariumRoyal Botanic GardensKew, Richmond, SurreyUK

Personalised recommendations