Kew Bulletin

, Volume 65, Issue 4, pp 539–547 | Cite as

The possibilities and challenges of in vitro methods for plant conservation

Article

Summary

Seed-based methods are generally the most efficient for propagating and storing plant germplasm, but these methods are not always adequate, and some species can benefit from in vitro methods for conservation. For species that produce few or no seeds in the wild, plants may be propagated in vitro, and in vitro shoot tips can provide material for cryostorage when seeds are not available or are recalcitrant. In vitro propagated plants may also serve as subjects for research, without depleting the genetic resources of the species. Clonal plants can be used to test out suitable habitat and can be used for basic research on endangered species, without disturbing the wild population. Despite the effectiveness of widely used techniques, however, there are still species that resist initiation into culture or that may be difficult to root or acclimatise. Similarly, tissue cryopreservation methods may be restrained by cost, particularly in maintaining multiple genotypes of many species. Maintaining such genotypes in vitro is also costly and runs the risk of loss or change over time. Examples of the successful use of in vitro methods will illustrate the variety of applications of these techniques, but costs and specific challenges will also be discussed to help define areas where further research is needed to realise the potential of in vitro methods as a tool for conservation.

Key Words

Cost cryopreservation plant tissue culture 

References

  1. Abu-Qaoud, H., Abu-Rayya, A. & Yaish, S. (2010). In vitro regeneration and somaclonal variation of Petunia hybrida. J. Fruit Ornam. Pl. Res. 18: 71 – 81.Google Scholar
  2. Aracama, C. V., Kane, M. E., Wilson, S. B. & Philman, N. L. (2008). Comparative growth, morphology, and anatomy of easy-and difficult-to-acclimatize sea oats (Uniola paniculata) genotypes during in vitro culture and ex vitro acclimatization. J. Amer. Soc. Hort. Sci. 133: 830 – 843.Google Scholar
  3. Bairu, M. W., Fennell, C. W. & van Staden, J. (2006). The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci. Hort. 108: 347 – 351.CrossRefGoogle Scholar
  4. Berjak, P., Farrant, J. M., Macaque, D. J. & Pammenter, N. W. (1990). Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci. Technol. 18: 297 – 310.Google Scholar
  5. Bunn, E., Turner, S., Panaia, M. & Dixon, K. W. (2007). The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Austral. J. Bot. 55: 345 – 355.CrossRefGoogle Scholar
  6. Carvalho, M. A., Quesenberry, K. H. & Gallo, M. (2010). Comparative assessment of variation in the USA Arachis pintoi (Krap. and Greg.) germplasm collection using RAPD profiling and tissue culture regeneration ability. Pl. Syst. Evol. 288: 245 – 251.CrossRefGoogle Scholar
  7. Center for Plant Conservation (2009). Species profiles. http://www.centerforplantconsergvation.org. Center for Plant Conservation, St. Louis.
  8. Charls, S. M. & Pence, V. C. (2004). In vitro propagation and acclimation of Avon Park harebells (Crotalaria avonensis), an endangered Florida species. In Vitro Cell. Developm. Biol. 40: 59A.Google Scholar
  9. Chaturvedi, H. C., Main, M. & Kidwai, N. R. (2007). Cloning of medicinal plants through tissue culture — a review. Indian J. Exp. Biol. 45: 937 – 948.PubMedGoogle Scholar
  10. Corredoira, E., San-José, M. C., Ballester, A. & Vieitez, A. M. (2004). Cryopreservation of zygotic embryo axes and somatic embyos of European chestnut. CryoLett. 25: 33 – 42.Google Scholar
  11. Dulloo, M. E., Ebert, A. W., Dussert, S., Gotor, E., Astorga, C., Vasquez, N., Rakotomalala, J. J., Rabemiafara, A., Eira, M., Bellachew, B., Omondi, C., Engelmann, F., Anthony, F., Watts, J., Qamar, Z. & Snook, L. (2009). Cost efficiency of cryopreservation as a long-term conservation method for coffee genetic resources. Crop Sci. 49: 2123 – 2138.CrossRefGoogle Scholar
  12. Euliss, A. C., Fisk, M. C., Coleman McCleneghan, S. & Neufeld, H. S. (2007). Allocation and morphological responses to resource manipulations are unlikely to mitigate shade intolerance in Houstonia montana, a rare southern Appalachian herb. Canad. J. Bot. 85: 976 – 985.CrossRefGoogle Scholar
  13. Fabre, J. & Dereuddre, J. (1990). Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. CryoLett. 11: 413 – 426.Google Scholar
  14. Foster, R. B. & Hubbell, S. P. (1990). The floristic composition of the Barro Colorado Island Forest. In: A. H. Gentry (ed.), Four Neotropical Rainforests, pp. 85 – 98. Yale University Press, New Haven.Google Scholar
  15. Gale, S. W., Yamazaki, J., Hutchings, M. J., Yukawa, T. & Miyoshi, K. (2010). Constraints on establishment in an endangered terrestrial orchid: a comparative study of in vitro and in situ seed germinability and seedling development in Nervilia nipponica. Bot. J. Linn. Soc. 163: 166 – 180.CrossRefGoogle Scholar
  16. George, E. F. (1996). Plant Propagation by Tissue Culture. Part 2. In Practice. 2 nd Edition. Exegetics Ltd., Edington.Google Scholar
  17. González-Benito, M. E. & Pérez, C. (1997). Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation-dehydration method. Biodivers. & Conserv. 6: 583 – 590.CrossRefGoogle Scholar
  18. IUCN (2010). IUCN Sampled Red List Index for Plants. International Union for the Conservation of Nature, Royal Botanic Garden, Kew, and the Natural History Museum, London. http://www.iucnredlist.org/news/srli-plants-press-release.
  19. Johnson, T. R., Stewart, S. L., Dutra, D., Kane, M. E. & Richardson, L. (2007). Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae) — preliminary evidence for the symbiotic culture advantage. Pl. Cell Tissue Organ Cult. 90: 313 – 323.CrossRefGoogle Scholar
  20. Kaeppler, S. M., Kaeppler, H. F. & Rhee, Y. (2000). Epigenetic aspects of somaclonal variation in plants. Pl. Molec. Biol. 43: 179 – 188.CrossRefGoogle Scholar
  21. Kane, M. E., Bird, K. T. & Lee, T. M. (1993). In vitro propagation of Ipomoea pes-caprae (Railroad vine). J. Coastal Res. 9: 356 – 362.Google Scholar
  22. Koo, B. & Smale, B. (2003). Economic costs of genebank operations. In: J. M. M. Engels & L. Visser (eds), A Guide to Effective Management of Germplasm Collections, IPGRI Handbook for Genebanks No. 6, pp. 93 – 106. International Plant Genetic Resources Institute (now Bioversity International), Rome.Google Scholar
  23. Li, D.-Z. & Pritchard, H. W. (2009). The science and economics of ex situ plant conservation. Trends Pl. Sci. 14: 614 – 621.CrossRefGoogle Scholar
  24. Matsumoto, T., Sakai, A., Takahashi, C. & Yamada, K. (1995). Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLett. 16: 189 – 196.Google Scholar
  25. Normah, M. N. & Vengadasalam, M. (1992). Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. CryoLett. 13: 199 – 208.Google Scholar
  26. ____ & Makeen, A. M. (2008). Cryopreservation of excised embryos and embryonic axes. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 211 – 240. Springer, New York.CrossRefGoogle Scholar
  27. Panaia, M., Senaratna, T., Dixon, K. W. & Sivasithamparam, K. (2004). High frequency somatic embryogenesis of koala fern (Baloskion tetraphyllum, Restoniaceae). In Vitro Cell. Developm. Biol. Pl. 40: 303 – 310.CrossRefGoogle Scholar
  28. Pence, V. C. (2005). In vitro collecting (IVC) I. The effect of media and collection method on contamination in temperate and tropical collections. In Vitro Cell. Developm. Biol. Pl. 41: 324 – 332.CrossRefGoogle Scholar
  29. ____ (2008). Cryopreservation of bryophytes and ferns. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 117 – 140. Springer, New York.CrossRefGoogle Scholar
  30. ____ (2011). Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Developm. Biol. Pl. (in press).Google Scholar
  31. ____ & Charls, S. M. (2003). In vitro collecting and establishment of tissue culture lines of three endangered Florida pawpaws. In Vitro Cell. Developm. Biol. 39: 19A.Google Scholar
  32. ____, Murray, S., Whitham, L., Cloward, D., Barnes, H. & Van Buren, R. (2008). Supplementation of the autumn buttercup population in Utah, USA, using in vitro propagated plants. In: P. S. Soorae (ed.), Global Re-introduction Perspectives, pp. 239 – 243. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi.Google Scholar
  33. ____, Sandoval, J. A., Villalobos, V. M. & Engelmann, F. (eds) (2002). In Vitro Collecting Techniques for Germplasm Conservation. IPGRI Technical Bulletin No. 7. International Plant Genetic Resources Institute, Rome.Google Scholar
  34. ____, Winget, G. D., Lindsey, K. L., Plair, B. L. & Charls, S. M. (2010). Propagation and cryopreservation of Todsen’s pennyroyal (Hedeoma todsenii) in vitro. Madrono 56: 221 – 228.CrossRefGoogle Scholar
  35. Reed, B. M. (1990). Survival of in vitro-grown apical meristems of Pyrus following cryopreservation. HortSci. 25: 111 – 113.Google Scholar
  36. ____ (2008). Plant Cryopreservation: A Practical Guide. Springer, New York.Google Scholar
  37. ____, Engelmann, F., Dulloo, M. E. & Engels, J. M. M. (eds) (2004). Technical Guidelines for the Management of Field and In Vitro Germplasm Collections. IPGRI Handbooks for Genebanks, No. 7. International Plant Genetic Resources Institute (now Bioversity International), Rome.Google Scholar
  38. ____, Normah, M. N. & Yu, X. (1994). Stratification is necessary for successful cryopreservation of axes from stored hazelnut. CryoLett. 15: 377 – 384.Google Scholar
  39. ____ & Uchendu, E. (2008). Controlled rate cooling. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 77 – 92. Springer, New York.CrossRefGoogle Scholar
  40. Sakai, A., Kobayashi, S. & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis) by vitrification. Pl. Cell Rep. 9: 30 – 33.Google Scholar
  41. ____, Hirai, D. & Niino, T. (2008). Development of PVS-based vitrification and encapsulation-vitrification protocols. In: B. M. Reed (ed.), Plant Cryopreservation: A Practical Guide, pp. 33 – 57. Springer, New York.CrossRefGoogle Scholar
  42. Sarasan, V., Cripps, R., Ramsay, M. M., Atherton, C., McMichen, M., Prendergast, G. & Rowntree, J. K. (2006). Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell. Developm. Biol. Pl. 42: 206 – 214.CrossRefGoogle Scholar
  43. Tanaka, D., Niino, T., Tsuchiya, Y., Shirata, K. & Uemura, M. (2008). Cryopreservation of shoot tips of endangered Hayachine-usuyukiso (Leontopodium hayachinense (Takeda) Hara et Kitam.) using a vitrification protocol. Pl. Genet. Res.: Characterization & Utilization 6: 164 – 166.Google Scholar
  44. Touchell, D. H., Dixon, K. W. & Tan, B. (1992). Cryopreservation of shoot-tips of Grevillea scapigera (Proteaceae): a rare and endangered plant from Western Australia. Austral. J. Bot. 40: 305 – 310.CrossRefGoogle Scholar
  45. Tweddle, J. C., Dickie, J. B., Baskin, C. C. & Baskin, J. M. (2003). Ecological aspects of desiccation sensitivity. J. Ecol. 91: 294 – 304.CrossRefGoogle Scholar
  46. Valero-Aracama, C., Kane, M. E., Wilson, S. B., Vu, J. C., Anderson, J. & Philman, N. L. (2006). Photosynthetic and carbohydrate status of easy- and difficult-to-acclimatize sea oats (Uniola paniculata L.) genotypes during in vitro culture and ex vitro acclimatization. In Vitro Cell. Developm. Biol. Pl. 42: 572 – 583.CrossRefGoogle Scholar
  47. Walter, K. S. & Gillett, H. J. (eds) (1998). 1997 IUCN Red List of Threatened Plants Compiled by the World Conservation Monitoring Centre, IUCN. The World Conservation Union, Gland, Switzerland, and Cambridge, UK.Google Scholar
  48. Wang, Q., Tanne, E., Arav, A. & Gafny, R. (2000). Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation dehydration. Pl. Cell Tissue Organ Cult. 63: 41 – 46.CrossRefGoogle Scholar
  49. Withers, L. A. (1985). Cryopreservation of cultured cells and protoplasts. In: K. K. Kartha (ed.), Cryopreservation of Plant Cells and Organs, pp. 243 – 267. CRC Press, Boca Raton.Google Scholar
  50. Zehr, B. E., Williams, M. E., Duncan, D. R. & Widholm, J. M. (1987). Somaclonal variation in the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Canad. J. Bot. 65: 491 – 499.CrossRefGoogle Scholar

Copyright information

© The Board of Trustees of the Royal Botanic Gardens, Kew 2011

Authors and Affiliations

  1. 1.Center for Conservation and Research of Endangered WildlifeCincinnati Zoo & Botanical GardenCincinnatiUSA

Personalised recommendations