Advertisement

Kew Bulletin

, Volume 63, Issue 2, pp 193–211 | Cite as

Comparative morphology of populations of Monstera Adans. (Araceae) from natural forest fragments in Northeast Brazil using elliptic Fourier Analysis of leaf outlines

  • I. M. Andrade
  • S. J. MayoEmail author
  • D. Kirkup
  • C. Van Den Berg
Article

Summary

A comparative study of the leaf outline morphometrics of Monstera adansonii var. klotzschiana, M. adansonii var. laniata and M. praetermissa was carried out. The study focused on populations in isolated montane humid (brejo) forests of Ceará state in Northeast Brazil and compared them with populations from Amazonia and the Brazilian Atlantic Forest. Digitised outlines were prepared from a total of 1,695 field-collected leaf images from 20 populations, and elliptic Fourier analysis was used to generate matrices of coefficients, from which six shape variables (principal components) were extracted using Principal Components Analysis. Intra-population variability and inter-population differences were analysed with multivariate distance methods. Separate analyses were carried out for each of three leaf size classes (juvenile, submature, mature) because of the strong heteroblasty typical of this genus. Juvenile leaves were the least variable size class within populations of M. adansonii var. klotzschiana. The shape variables expressed very similar types of variation in all three size classes. The Ceará brejo populations of M. adansonii var. klotzschiana showed significant differences between mature leaf outlines in all pairwise comparisons; the Pacatuba population was the most distinct. The Ceará populations did not cluster together exclusively. In all three size classes, populations clustered together into their taxonomic groups, most clearly so in mature leaves. No correlation between morphological and geographic distance matrices was found, nor between morphological and molecular distance. The study showed that leaf outline shape is a practicable and useful quantitative trait for studying morphological variability at species, varietal and population levels.

Key words

Araceae Brazil brejo forest Ceará elliptic Fourier Analysis Monstera morphometrics 

Notes

Acknowledgements

We are most grateful to the following organisations and persons for their essential help: FUNCAP (Fundaçao Cearense de Amparo à Pesquisa), FAPESB (Fundação de Amparo a Pesquisa do Estado da Bahia, WWF Brasil, Kew Latin America Research Fellowships Programme (Royal Botanic Gardens, Kew), Margaret Mee Fellowships Programme (Fundação Botânica Margaret Mee, Rio de Janeiro, Royal Botanic Gardens, Kew), Ministério do Meio Ambiente (IBAMA, permit number 001/2004, 042/04), Conselho Nacional de Desenvolvimento Científica e Tecnológica (CNPq, MCT permit number, 168/01), Dr Ana Maria Giulietti, Dr Robyn Cowan, Anna Haigh, Dr Jean-Jacques de Granville and the staff of the CAY herbarium in French Guiana, Bertrand Goguillon and the staff of IRD (French Guiana) for permission to collect, Dr Denis Barabé, Thales Alves Ribeiro, Sr. José Teodoro Soares, Rector of the Universidade Estadual do Vale do Acaraú (UVA), Sobral-CE.

Supplementary material

12225_2008_9032_MOESM1_ESM.doc (170 kb)
ESM 1 (DOC 174 KB)

References

  1. Ab’Sáber, A. N. (1982). The paleoclimate and paleoecology of Brazilian Amazônia. In: G. T. Prance (ed.), Biological diversification in the Tropics. Columbia University Press, New York. Pp. 41 – 59.Google Scholar
  2. Andrade, I. M. & Mayo, S. J. (1998). Dynamic shoot morphology in Monstera adansonii Schott var. klotzschiana (Schott) Madison (Araceae). Kew Bull. 532: 399 – 417.CrossRefGoogle Scholar
  3. ____, ____, Van den Berg, C., Fay, M., Chester, M., Lexer, C. & Kirkup, D. (2007). Genetic variation in populations of Monstera adansonii Schott (Araceae) from natural forest fragments in Northeast Brazil estimated with AFLP molecular markers. Ann. Bot. 100: 1143 – 1154.PubMedCrossRefGoogle Scholar
  4. Andrade-Lima, D. de (1982). Present-Day Forest Refuges in Northeastern Brasil. In: G. T. Prance (ed.), Biological Diversification in the Tropics. Columbia University Press, New York. Pp. 245 – 251.Google Scholar
  5. Borges-Nojosa, D. M. & Caramaschi, U. (2003). Composição e Análise Comparativa da Diversidade e das Afinidades Biogeográficas dos Lagartos e Anfisbenídeos (Squamata) dos Brejos Nordestinos. In: I. Leal, J. M. C. Silva & M. Tabarelli (eds.), Ecologia e Conservação da Caatinga. ed. 1, 1: 489 – 540. Recife.Google Scholar
  6. Cannon, C. H. & Manos, P. S. (2001). Combining and comparing morphometric shape descriptors with a molecular phylogeny: the case of fruit type evolution in Bornean Lithocarpus (Fagaceae). Syst. Biol. 50(6): 860 – 880.PubMedCrossRefGoogle Scholar
  7. Ferson, S., Rohlf, F. J. & Koehn, R. K. (1985). Measuring shape variation of two-dimensional outlines. Syst. Zool. 34(1): 59 – 68.CrossRefGoogle Scholar
  8. Figueiredo, M. A. (1997). Vegetação. In: Fundação Instituto de Planejamento do Ceará (IPLANCE). Atlas do Ceará. Fortaleza. Pp. 28 – 29.Google Scholar
  9. Furuta, N., Ninomiya, S., Takahashi, S., Ohmori, H. & Ukai, Y. (1995). Quantitative evaluation of soybean (Glycine max (L.) Merr.) leaflet shape by principal component scores based on elliptic Fourier descriptors. Breeding Sci. 45: 315 – 320.Google Scholar
  10. GIMP (2006). http://www.gimp.org. Version 2.2.4 by S. Kimball & P. Mattis.
  11. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001). PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica 41: 9; http://folk.uio.no/ohammer/past Google Scholar
  12. IBGE (1985). Atlas nacional do Brasil. IBGE. Rio de Janeiro.Google Scholar
  13. Iwata, H. & Ukai, Y. (2002). SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93: 384 – 385.PubMedCrossRefGoogle Scholar
  14. ____, Nesumi, H., Ninomiya, S., Takano, Y. & Ukai, Y. (2002). The evaluation of genotype x environment interactions of citrus leaf morphology using image analysis and elliptic Fourier descriptors. Breeding Sci. 52: 243 – 251.CrossRefGoogle Scholar
  15. Jensen, R. J., Ciofani, K. M. & Miramontes, L. C. (2002). Lines, outlines, and landmarks: morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their hybrid. Taxon 51: 475 – 492.CrossRefGoogle Scholar
  16. Kessler, S. & Sinha, N. (2004). Shaping up: the genetic control of leaf shape. Curr. Opin. Pl. Biol. 7: 65 – 72.PubMedCrossRefGoogle Scholar
  17. Madison, M. (1977). A revision of Monstera (Araceae). Contr. Gray Herb. 207: 1 – 101.Google Scholar
  18. Mayo, S. J. (1983). Aspectos da fitogeografia das Araceae bahianas. In: Anais XXXIV Congresso Nacional de Botânica do Brasil, Porto Alegre, Brasil 2: 215 – 227. Diretoria da Sociedade, Porte Alegre.Google Scholar
  19. McLellan, T. (1993). The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei (Begoniaceae). Amer. J. Bot. 807: 796 – 804.CrossRefGoogle Scholar
  20. Oliveira, P. E., Barreto, A. M. F. & Suguio, K. (1999). Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr., Palaeoclimatol., Palaeoecol. 152: 319 – 337.CrossRefGoogle Scholar
  21. Pôrto, K. C., Cabral, J. J. P. & Tabarelli, M. (2004). Brejos de altitude em Pernambuco e Paraíba: história natural, ecologia e conservação. Ministério do Meio Ambiente, Brasília.Google Scholar
  22. Raveloson, H., Le Minor, J.-M., Rumpler, Y. & Schmittbuhl, M. (2005). Shape of the lateral mandibular outline in Lemuridae: a quantitative analysis of variability using elliptical Fourier analysis. Folia Primatol. 76: 245 – 261.PubMedCrossRefGoogle Scholar
  23. Ray, T. (1983). Monstera tenuis (Chirravaca, Mano de Tigre, Monstera). Pp. 278 – 280 In: D. H. Janzen, Costa Rican Natural History. University of Chicago Press, Chicago.Google Scholar
  24. Rodal, M. J. N., Sales, M. F. & Mayo, S. J. (1998). Florestas Serranas de Pernambuco: Localização dos remanescentes dos brejos de altitude. Imprensa Universitária, Universidade Federal Rural de Pernambuco, Recife.Google Scholar
  25. Rohlf, F. J. (2004). TpsDig Version 1.40. Digitizing software. http://life.bio.sunysb.edu/morph/
  26. ____ (2005). NTSYSpc: Numerical Taxonomy System ver. 2.20d, Exeter Publishing, Ltd. Setauket, NY. http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html Google Scholar
  27. ____ (2006). Morphometrics at SUNY Stony Brook: website http://life.bio.sunysb.edu/morph/
  28. ____ & Archie, J. W. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Syst. Zool. 33(3): 302 – 317.CrossRefGoogle Scholar
  29. Rumpunen, K. & Bartish, I. V. (2002). Comparison of differentiation estimates based on morphometric and molecular data, exemplified by various leaf shape descriptors and RAPDs in the genus Chaenomeles (Rosaceae). Taxon 51: 69 – 82.CrossRefGoogle Scholar
  30. Sales, M. F., Mayo, S. J. & Rodal, M. J. N. (1998). Plantas vasculares das florestas serranas de Pernambuco: Um checklist da flora ameaçada dos brejos de altitude, Pernambuco Brasil. Imprensa Universitária, Universidade Federal Rural de Pernambuco, Recife.Google Scholar
  31. Sampaio, V. S. B., Giulietti, A. M., Virginio, J. & Gamarra-Rojas, C. F. L. (2002). Vegetação e flora da caatinga. Associação Plantas do Nordeste (APNE), Centro Nordestino de Informação Sobre Plantas (CNIP), Recife.Google Scholar
  32. Slice, D. (2008). Morpheus et al. Multiplatform software for morphometric research. http://www.morphometrics.org/id6.html
  33. Tatsuta, H., Mizota, K. & Akimoto, S.-I. (2004). Relationship between size and shape in the sexually dimorphic beetle Prosopocoilus inclinatus (Coleoptera: Lucanidae). Biol. J. Linn. Soc. 81: 219 – 233.CrossRefGoogle Scholar
  34. Yamanaka, N., Ninomiya, S., Hoshi, M., Tsubokura, Y., Yano, M., Nagamura, Y., Sasaki, T. & Harada, K. (2001). An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res. 8: 61 – 72.PubMedCrossRefGoogle Scholar
  35. Yoshioka, Y., Iwata, H., Ohsawa, R. & Ninomiya, S. (2004). Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal component analysis. Ann. Bot. 94: 657 – 664.PubMedCrossRefGoogle Scholar

Copyright information

© The Board of Trustees of the Royal Botanic Gardens, Kew 2008

Authors and Affiliations

  • I. M. Andrade
    • 1
  • S. J. Mayo
    • 2
    Email author
  • D. Kirkup
    • 2
  • C. Van Den Berg
    • 1
  1. 1.Programa de Pós-Graduação em Botânica, Departamento de Ciências BiológicasUniversidade Estadual de Feira de Santana (UEFS)Feira de SantanaBrazil
  2. 2.HerbariumRoyal Botanic GardensRichmondUK

Personalised recommendations