Advertisement

Influence of current and future climate on the seed germination of Cenostigma microphyllum (Mart. ex G. Don) E. Gagnon & G. P. Lewis

  • Samara Elizabeth Vieira Gomes
  • Gilmara Moreira de Oliveira
  • Marcelo do Nascimento Araujo
  • Charlotte E. Seal
  • Bárbara França DantasEmail author
Article

Abstract

Seasonally tropical dry forests are among the most threatened environments by climate change. However, these forests, which are at risk of desertification, are still poorly studied and conserved. Seeds of several species endemic to the Caatinga, a Brazilian dry forest, are also understudied, mainly regarding their ability to cope with a hotter and drier climate predicted for the future. For the first time in seeds of Cenostigma microphyllum (Leguminosae), we aimed to study the presence of physical dormancy, temperature and salt tolerance to ascertain the effects of current and future climate on seed germination. Intact and scarified seeds were investigated by incubating at constant temperatures (15 to 40°C) or in NaCl solutions (−0.2 to −1.0 MPa) at 25 and 30°C. Thermal and osmotic thresholds, as well as thermal time and hydrotime constants, were calculated using linear regressions between the germination conditions and germination rate. To predict germination in the future, a heat sum model based on thermal time and hydrotime was applied to current and future climate scenarios. Seeds of C. microphyllum were permeable to water and did not have physical dormancy. The results indicated that increases in temperature are unlikely to affect germination, despite greater sensitivity to salinity presented at higher temperatures. In a future climate, the reduction in the number of weeks with at least 15 mm rainfall will affect the germination timing for the seeds. Thus, we can conclude that under the most pessimistic climate scenario predicted for the future, the seed germination of C. microphyllum may be restricted, likely leading to low seedling recruitment and establishment.

Keywords

temperature salt stress climate change thermal time model hydrotime model 

Notes

References

  1. Al-Ahmadi MJ, Kafi M (2007) Cardinal temperatures for germination of Kochia scoparia (L.). J Arid Environm 68:308–314CrossRefGoogle Scholar
  2. Alsaeedi A, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Al-Otaibi A (2018) Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Pl Physiol Biochem 125:164–171CrossRefGoogle Scholar
  3. Alves EU, Cardoso EDA, Bruno RDLA, Alves AU, Galindo EA, Braga Junior JM (2007) Superação da dormência em sementes de Caesalpinia pyramidalis Tul. Rev Árv 31:405–415CrossRefGoogle Scholar
  4. Alves MM, Alves EU, Santos Silva-Moura S, Araújo LR, Santos Silva R, Ursulino M M (2014) Emergência e crescimento inicial de plântulas de Platymiscium florinbundum Vog. em função de diferentes posições e profundidades de semeadura. Cienc. Rural 44:2129-2135Google Scholar
  5. Antunes CGC, Pelacani CR, Ribeiro RC, Gomes HLR, Castra RD (2010) Influência do armazenamento na qualidade fisiológica de sementes de Caesalpinia pyramidalis Tul. Rev Árv 34:1001–1008CrossRefGoogle Scholar
  6. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16CrossRefGoogle Scholar
  7. Bradford KJ (1995) Water relations in seed germination. Seed Developm Germination 1:351–396Google Scholar
  8. Cardoso VJ (2004) Dormência: estabelecimento do processo. Germinação: do básico ao aplicado. Porto Alegre, Artmed, pp 95–108Google Scholar
  9. Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes. J Exp Bot 37:705–715CrossRefGoogle Scholar
  10. Dantas BF, Correia JS, Marinho LB, Aragão CA (2008) Alterações bioquímicas durante a embebição de sementes de catingueira (Caesalpinia pyramidalis Tul.). Revista Brasil Sementes 30:221–227CrossRefGoogle Scholar
  11. Dantas BF, Ribeiro RC, Matias JR, Araujo GGL (2014) Germinative metabolism of Caatinga forest species in biosaline agriculture. J Seed Sci, 36: 194-203Google Scholar
  12. Ellis RH, Covell S, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes. II. Interspecific variation in chickpea (Cicer arietinum L.) at temperature. J Exp Bot 37:1503–1515CrossRefGoogle Scholar
  13. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University PressGoogle Scholar
  14. Fernandes A (2003) Conexões florísticas do Brasil. Banco do Nordeste, FortalezaGoogle Scholar
  15. Freire JM, Sousa TJES, Ataide GM, Breier TB, Rouws JIRC (2017) Influence of pre-germination treatments on germination seed in Melanoxylon brauna Schott. African J Agric Res 12:3149–3153CrossRefGoogle Scholar
  16. Grossiord C, Sevanto S, Dawson TE, Adams HD, Collins AD, Dickman LT, McDowell NG (2017) Warming combined with more extreme precipitation regimes modifies the water sources used by trees. New Phytol 213:584–596PubMedCrossRefGoogle Scholar
  17. Guedes RS, Alves EU, Gonçalves EP, Braga Júnior JM, Viana JS, Colares PNQ (2010) Substratos e temperaturas para testes de germinação e vigor de sementes de Amburana cearensis (Allemão) AC Smith. Rev Árv 34:57–64CrossRefGoogle Scholar
  18. Gummerson RJ (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J Exp Bot 37:729–741CrossRefGoogle Scholar
  19. Hardegree SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Ann Bot (Oxford) 97:1115–1125Google Scholar
  20. Hirata R, Zobbi J, Fernandes A, Bertolo R (2006) Hidrogeología del Brasil: una breve crónica de las potencialidades, problemática y perspectivas. Bol Geol Minero 117:25–36Google Scholar
  21. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  22. Lang ARG (1967) Osmotic coefficients and water potentials of sodium chloride solutions from 0 to 40°C. Austral J Chem 20:2017–2023CrossRefGoogle Scholar
  23. Maguire JD (1962) Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2:176–177CrossRefGoogle Scholar
  24. Marengo JA (2008) Água e mudanças climáticas. Estudos Avançados 22:83–96CrossRefGoogle Scholar
  25. Marengo JA (2014) O futuro clima do Brasil. Revista USP 103:25–32CrossRefGoogle Scholar
  26. Matias JR, Oliveira GM, Dantas BF (2014) Colheita e beneficiamento de algumas espécies da Caatinga. Inform Abrates 2422–2426Google Scholar
  27. Meiado MV, Silva FFS, Carvalho DCA, Siqueira Filho JA (2012) Diaspore of the caatinga: a review. Flora of the Caatingas of the São Francisco River: natural history and conservation. 1st edn, Andrea Jakobsson, pp 306–365Google Scholar
  28. Merino-Martín L, Courtauld C, Commander L, Turner S, Lewandrowski W, Stevens J (2017) Interactions between seed functional traits and burial depth regulate germination and seedling emergence under water stress in species from semi-arid environments. J Arid Environm 147:25–33CrossRefGoogle Scholar
  29. Moreno C, Seal CE, Papenbrock J (2018) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204:40–48CrossRefGoogle Scholar
  30. Moura MSB, Galvincio JD, Brito LT L, Souza LSB, Sá IIS, Silva TGF (2007) Clima e água de chuva no Semi-Árido. In Brito LT L, Moura MSB, Gama GFB (eds) Potencialidades da água de chuva no Semi-Árido brasileiro. Petrolina, Embrapa Semi-Árido, pp 37–59Google Scholar
  31. Nascimento JPB, Meiado MV, Siqueira-Filho JA (2018) Seed germination of three endangered subspecies of Discocactus Pfeiff. (Cactaceae) in response to environmental factors. J Seed Sci 40:253–262CrossRefGoogle Scholar
  32. Nasr SMH, Parsakhoo A, Naghavi H, Koohi SKS (2012) Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.). New Forests 43:45–55CrossRefGoogle Scholar
  33. Oliveira GMD, Silva FFSD, Araujo MDN, Costa DCCD, Gomes SEV, Matias JR, Angelotti F, Pelacani-Cruz CR, Seal CE, Dantas BF (2019) Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. J Seed Sci 41:32–43CrossRefGoogle Scholar
  34. Ooi MK, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Pl & Soil 353:289–303CrossRefGoogle Scholar
  35. Paim LP, Avrella ED,Fior CS (2016) Germinação de sementes de Anadenanthera colubrina (Vellozo) Brenan em diferentes temperaturas. Rev J Pós-Graduação e Pesq Congrega Urcamp 573–582Google Scholar
  36. Paterno GB, Siqueira Filho JA, Ganade G (2016) Species-specific facilitation, ontogenetic shifts and consequences for plant community succession. J Veg Sci 27:606–615CrossRefGoogle Scholar
  37. PBMC (2014) Base científica das mudanças climáticas. Contribuição do Grupo de Trabalho 1 do Painel Brasileiro de Mudanças Climáticas ao Primeiro Relatório da Avaliação Nacional sobre Mudanças Climáticas. COPPE. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BrasilGoogle Scholar
  38. Pedrotti A, Chagas RM, Ramos VC, Nascimento Prata AP, Lucas AAT, dos Santos PB (2015) Causes and consequences of the process of soil salinization. REGET 19:1308–1324Google Scholar
  39. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC et al. (2013) Essential biodiversity variables. Science 339:277–278PubMedCrossRefGoogle Scholar
  40. Queiroz LP (2009) Legumes of the Caatinga. Royal Botanic Garden EdinburghGoogle Scholar
  41. Ranal MA, Santana DGD (2006) How and why to measure the germination process? Brazil J Bot 29:1–11CrossRefGoogle Scholar
  42. Ribeiro LC, Borghetti F (2014) Comparative effects of desiccation, heat shock and high temperatures on seed germination of savanna and forest tree species. Austral Ecol 39:267–78CrossRefGoogle Scholar
  43. Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304PubMedCrossRefGoogle Scholar
  44. Sales NM, Pérez-García F, Silveira FAO Consistent variation in seed germination across an environmental gradient in a Neotropical savana S African J Bot 87:129–133Google Scholar
  45. Santos TEM, Montenegro AAA, Silva DD (2011) Umidade do solo no semiárido pernambucano usando-se reflectometria no domínio do tempo (TDR). Rev Brasil Engen Agríc Ambient 15:670–679CrossRefGoogle Scholar
  46. Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem 31:831–838CrossRefGoogle Scholar
  47. Silva FAS, Azevedo CAV (2016) The Assistat Software Version 7.7 and its use in the analysis of experimental data. African J Agric Res 11:3733–3740CrossRefGoogle Scholar
  48. Siqueira Filho JA (2012) Flora of the Caatingas of the São Francisco River: natural history and conservation. 1st edn, Andrea JakobssonGoogle Scholar
  49. Sovu PS, Tigabu M, Odén PC (2010) Restoration of former grazing lands in the highlands of Laos using direct seeding of four native tree species. Mountain Res Developm 30:232 243Google Scholar
  50. SUDENE (1980) Plano de aproveitamento integrado dos recursos hídricos do Nordeste do Brasil - fase I: recursos hídricos I águas subterrâneas. 7th edn, Departamento de Recursos Naturais.Google Scholar
  51. Vásquez-Yanes C, Orozco-Segovia A (1993) Patterns of seed longevity and germination in the tropical rainforest. Ann Rev Ecol Syst 24:69–87CrossRefGoogle Scholar
  52. Vieira DLM, Scariot A (2006) Principles of natural regeneration of tropical dry forest for restoration. Restorat Ecol 14:11–20CrossRefGoogle Scholar
  53. Wiersema JH, León B (2016) World economic plants: a standard reference. Boca RatonGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2019

Authors and Affiliations

  1. 1.Postgraduate Programme in Agronomy: Irrigated HorticultureUniversity of the State of Bahia, Avenida Edgard Chastinet Guimarães, São GeraldoJuazeiroBrazil
  2. 2.Post-Programme on Plant Genetic Resources of the State University of Feira de SantanaAvenida Transnordestina, s/n - Novo Horizonte,Brazil
  3. 3.Uninassau College, Clementino Coelho, 714 - Centro, Petrolina - PE,PernambucoBrazil
  4. 4.Department of Comparative Plant and Fungal BiologyRoyal Botanic Gardens, Kew, Wakehurst PlaceArdinglyUK
  5. 5.Embrapa SemiaridPetrolinaBrazil

Personalised recommendations