Folia Geobotanica

, Volume 53, Issue 4, pp 429–447 | Cite as

Genome size variation in the genus Andryala (Hieraciinae, Asteraceae)

  • Jaroslav ZahradníčekEmail author
  • Jindřich Chrtek
  • Maria Zita Ferreira
  • Anna Krahulcová
  • Judith Fehrer


The genus Andryala includes diploid plants distributed in the Mediterranean Basin, Macaronesia and in one isolated outpost in the Romanian Carpathians. We analysed nuclear genome size in a phylogenetic framework and assessed relationships between genome size and life form (perennials vs annuals/biennials) and the consequences of insular vs continental distribution. Absolute nuclear genome size of 18 species or subspecies was determined using propidium iodide flow cytometry. The evolution of genome size was investigated using the Brownian motion model with the tree scaling parameters λ, κ and δ. The mean 2C values differs up to 1.84-fold between species (from 2.69 to 5.01 pg). Chromosome numbers of six species are reported for the first time. The highest 2C values are present in two well supported basal lineages corresponding to the relict species A. laevitomentosa and A. agardhii. The rest of Andryala species that form a well-supported clade of closely related species (the ‘Major Radiation Group’), except for two populations of A. ragusina, have significantly smaller genome sizes. In the ‘Major Radiation Group’, genome size in perennial species is significantly greater compared to annual and biennial species. With a possible bias caused by A. dentata and A. integrifolia, insular species of the ‘Major Radiation Group’ have lower nuclear genomes than continental ones. The genome size variation contains strong phylogenetic signal, which could indicate that genome size in the group under study is not greatly influenced by selection and is probably a result of neutral evolution or genetic drift.


Andryala Asteraceae Genome size Macaronesia Mediterranean Basin Phylogeny 



We are grateful to I. Álvarez, M. Benedito, E. Bräutigam, S. Bräutigam, Z. Dočkalová, I. Ferreira, R. Jardim, K. Krak, L. Medina, P. Mráz, V. Mrázová, A. Pupo Correia, M. Puskás, M. Menezes de Sequeira, T. Urfus, K. Vazačová, P. Vít, J. Vítová, P. Zahradníčková and A. Zeddam for their collaboration with field sampling and plant collecting. Fred Rooks kindly improved our English. This work was supported by the Czech Science Foundation (P506/10/1353 to J.Ch.) and the long-term research development project No. RVO 67985939 of the Czech Academy of Sciences.


  1. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot (Oxford) 94:897–911CrossRefGoogle Scholar
  2. Andrés-Sánchez S, Temsch EM, Rico E, Martínez-Ortega MM (2013) Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications. Pl Syst Evol 299:331–345CrossRefGoogle Scholar
  3. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Pl Syst Evol 257:95–117CrossRefGoogle Scholar
  4. Barrett SCH, Harder LD, Worley AC (1996) The comparative biology of pollination and mating in flowering plants. Philos Trans, Ser B 351:1271–1280CrossRefGoogle Scholar
  5. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Philos Trans, Ser B 181:109–135Google Scholar
  6. Bennett MD (1976) DNA amount, latitude and crop plant distribution. In Jones K, Brandham PE (eds) Current chromosome research. Elsevier / North-Holland Biomedical Press, Amsterdam, pp 151–158Google Scholar
  7. Bennett MD, Leitch I (2005) Genome size evolution in plants. In Gregory TR (ed.) The evolution of the genome. Elsevier, San Diego, pp 90–151Google Scholar
  8. Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot (Oxford) 82 (Suppl. A)1:121–134Google Scholar
  9. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Ann Bot (Oxford) 86:859–909CrossRefGoogle Scholar
  10. Blanca G (2011) Andryala L. In Blanca G, Cabezudo B, Cueto M, Salazar C, Morales Torres C (eds) Flora vasclar de Andalucía Oriental, Universidades de Almería, Granada, Jaén y Málaga, Granada, pp 1572–1573Google Scholar
  11. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (southern Spain). Biol Conservation 85:269–285CrossRefGoogle Scholar
  12. Bramwell D (1976) The endemic flora of the Canary Islands; distribution, relationships and phytogeography. In Kunkel G. (ed.) Biogeography and ecology in the Canary Islands. W Junk, The Hague, pp 207–240CrossRefGoogle Scholar
  13. Capineri A, D'Amato G, Marchi P (1978) Numeri cromosomici per la flora italiana 534–583. Inform Bot Ital 10:447–448Google Scholar
  14. Chrtek J, Zahradníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot (Oxford) 104:161–178CrossRefGoogle Scholar
  15. Doležel J, Doleželová M, Novák F (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Pl 36: 351–357CrossRefGoogle Scholar
  16. Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148Google Scholar
  17. Dyer AF (1963) The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Technol 38:85–90CrossRefGoogle Scholar
  18. Enke N, Fuchs J, Gemeinholzer B (2011) Shrinking genomes? Evidence from genome size variation in Crepis (Compositae). Pl Biol 13:185–193CrossRefGoogle Scholar
  19. Fehrer J, Gemeinholzer B, Chrtek J, Bräutigam S (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molec Phylogen Evol 42:347–361CrossRefGoogle Scholar
  20. Ferreira MZ, Jardim R, Álvarez Fernández I, Menezes de Sequeira M (2014a) Andryala perezii (Asteraceae), a new species from the Canary Islands. Novon 23:147–156CrossRefGoogle Scholar
  21. Ferreira MZ, Álvarez Fernández I, Chrtek J, Menezes de Sequeira M (2014b) Notes on North African Andryala L. (Asteraceae): A new combination and typifications. Acta Bot Malac 39: 283–293Google Scholar
  22. Ferreira MZ, Zahradníček J, Kadlecová J, Menezes de Sequeira M, Chrtek J Jr, Fehrer J (2015) Tracing the evolutionary history of the little-known Mediterranean-Macaronesian genus Andryala (Asteraceae) by multigene sequencing. Taxon 62:535–551CrossRefGoogle Scholar
  23. Fleischmann A, Schäferhoff B, Heubl G, Rivadavia F, Barthlott W, Müller KF (2010) Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Molec Phylogen Evol 56:768–783CrossRefGoogle Scholar
  24. Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G (2014) Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot (Oxford) 114:1651–1663CrossRefGoogle Scholar
  25. Frajman B, Rešetnik I, Weiss-Schneeweiss H, Ehrendorfer F, Schönswetter P (2015) Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae). BMC Evol Biol 15:140CrossRefGoogle Scholar
  26. Francisco-Ortega J, Santos-Guerra A, Hines A, Jansen R (1997) Molecular evidence for a Mediterranean origin of the Macaronesian endemic genus Argyranthemum (Asteraceae). Amer J Bot 84:1595–1613CrossRefGoogle Scholar
  27. Garnatje T, García S, Canela M (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): Biogeographic implications. Pl Syst Evol 264: 117–134CrossRefGoogle Scholar
  28. Goldblatt P, Johnson DE (1979–) Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. Available at (accessed 2 Nov 2016)
  29. Govindaraju DR, Cullis CA (1991) Modulation of genome size in plants: the influence of breeding systems and neighbourhood size. Evol Trends Pl 5:43–51Google Scholar
  30. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82:27–35CrossRefGoogle Scholar
  31. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot (Oxford) 95:91–98CrossRefGoogle Scholar
  32. Greuter W (2006–) Compositae (pro parte majore). In Greuter W, Raab-Straube EV (eds) Euro+Med Plantbase – The information resource for Euro-Mediterranean plant diversity. Available at (accessed 10 Nov 2016)
  33. Gurushidze M, Fuchs J, Blattner FR (2012) The evolution of genome size variation in drumstick onions (Allium subgenus Melanocrommyum). Syst Bot 37:96–104CrossRefGoogle Scholar
  34. Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232CrossRefGoogle Scholar
  35. Humphries CJ, Murray BG, Bocquet G, Vasudevan KN (1978) Chromosome numbers of phanerogams from Morocco and Algeria. Bot Notes 131:391–406Google Scholar
  36. Kang M, Tao JJ, Wang J, Ren C, Qi QW, Xiang QY, Huang H (2014) Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. New Phytol 202:1371–1381CrossRefGoogle Scholar
  37. Kapralov MV, Filatov DA (2011) Does large genome size limit speciation in endemic island floras? J Bot: 458684Google Scholar
  38. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190CrossRefGoogle Scholar
  39. Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391Google Scholar
  40. Laurie DA, Bennett MD (1985) Nuclear DNA content in the genera Zea and Sorghum: intergeneric, interspecific and intraspecific variation. Heredity 55:307–313CrossRefGoogle Scholar
  41. Lazarević M, Kuzmanović N, Lakušić D, Alegro A, Schönswetter P, Frajman B (2015) Patterns of cytotype distribution and genome size variation in the genus Sesleria Scop. (Poaceae). Bot J Linn Soc 179:126–143CrossRefGoogle Scholar
  42. Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 153–176CrossRefGoogle Scholar
  43. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot (Oxford) 82 (Suppl.A):85–94CrossRefGoogle Scholar
  44. Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296–2308CrossRefGoogle Scholar
  45. Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma L. (Zingiberaceae). Ann Bot (Oxford) 100:500–526Google Scholar
  46. Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21Google Scholar
  47. Löve A, Kjellqvist E (1974) Cytotaxonomy of Spanish plants. IV. Dicotyledons: Caesalpinaceae – Asteraceae. Lagascalia 4:153–211Google Scholar
  48. MacGillivray CW, Grime JP (1995) Genome size predicts frost-resistance in British herbaceous plants – implication for rates of vegetation response to global warming. Funct Ecol 9:320–325CrossRefGoogle Scholar
  49. Mandák B, Krak K, Vít P, Pavlíková Z, Lomonosova MN, Habibi F, Wang L, Jellen EN, Douda J (2016) How genome size variation is linked with evolution within Chenopodium sensu lato. Perspect Pl Ecol Evol Syst 23:18–32CrossRefGoogle Scholar
  50. Mansion G, Selvi F, Guggisberg A, Conti E (2009) Origin of Mediterranean insular endemics in the Boraginales: Integrative evidence from molecular dating and ancestral area reconstruction. J Biogeogr 36:1282–1296CrossRefGoogle Scholar
  51. Morgan M (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275.CrossRefGoogle Scholar
  52. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot (Oxford) 95:119–125CrossRefGoogle Scholar
  53. Negrea BM, Pricop E (2009) Rediscovery of Pietrosia levimentosa E. I. Nyárády ex Sennik., an endemic and endangered plant species from Pietrosul Bistriţei Mountain, Romania. Romanian J Biol 54:101–114Google Scholar
  54. Obermayer R, Greilhuber J (2005) Does genome size in Dasypyrum villosum vary with fruit colour? Heredity 95:91–95CrossRefGoogle Scholar
  55. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Meth Cell Biol 33:105–110Google Scholar
  56. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefGoogle Scholar
  57. Pagel M, Meade A (2007) BayesTraits. Computer program and documentation. Available at
  58. Price HJ (1976) Evolution of DNA content in higher plants. Bot Rev 42:27–82CrossRefGoogle Scholar
  59. Price HJ, Chambers KL, Bachmann K (1981) Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Bot Gaz 142:415–426CrossRefGoogle Scholar
  60. Pustahija F, Brown SC, Bogunić F, Bašić N, Muratović E, Ollier S, Hidalgo O, Bourge M, Stevanović V, Siljak-Yakovlev S (2013) Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Pl & Soil 373:427–453CrossRefGoogle Scholar
  61. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474CrossRefGoogle Scholar
  62. Sell PD (1975) Taxonomic and nomenclatural notes on the Compositae subfam. Cichorioideae. Bot J Linn Soc 71:256Google Scholar
  63. Sell PD (1976) Andryala L. In Tutin T., Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 4, Plantaginaceae to Compositae (and Rubiaceae). Cambridge University Press, Cambridge, pp 358Google Scholar
  64. Sennikov AN (1999) Pietrosia Nyárády: A restored genus of the subtribe Hieraciinae. Komarovia 1:77–78Google Scholar
  65. Slovák M, Vít P, Urfus T, Suda J (2009) Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr 36:372–384CrossRefGoogle Scholar
  66. Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca ancestral expansion and subsequent reduction. Ann Bot (Oxford) 101:421–433CrossRefGoogle Scholar
  67. Suda J, Kyncl T, Jarolímová V (2005) Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Pl Syst Evol 252:215–238CrossRefGoogle Scholar
  68. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007a) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335CrossRefGoogle Scholar
  69. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss G, Trávníček P, Schönswetter P (2007b) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus Willd. (Asteraceae). Amer J Bot 94:1391–1401CrossRefGoogle Scholar
  70. Talavera S, Talavera M (2015) El género Andryala L. (Compositae, Cichorieae) en la Península Ibérica y Baleares: una nueva especie e híbridos interspecíficos. Acta Bot Malac 40:296–310CrossRefGoogle Scholar
  71. Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614CrossRefGoogle Scholar
  72. Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Amer J Bot (Oxford) 93:148–56CrossRefGoogle Scholar
  73. Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47CrossRefGoogle Scholar
  74. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37CrossRefGoogle Scholar
  75. Witkowski ZJ, Król W, Solarz W (eds) (2003) Carpathian list of endangered species. WWF and Institute of Nature Conservation, Polish Academy of Sciences, Vienna and KrakowGoogle Scholar
  76. Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2018

Authors and Affiliations

  • Jaroslav Zahradníček
    • 1
    Email author
  • Jindřich Chrtek
    • 1
    • 2
  • Maria Zita Ferreira
    • 3
  • Anna Krahulcová
    • 2
  • Judith Fehrer
    • 2
  1. 1.Department of Botany, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
  3. 3.Faculdade de Ciências da VidaUniversidade da MadeiraFunchalPortugal

Personalised recommendations