Folia Geobotanica

, Volume 53, Issue 3, pp 243–263 | Cite as

Holocene development of two calcareous spring fens at the Carpathian-Pannonian interface controlled by climate and human impact

  • Eva Jamrichová
  • Andrea Gálová
  • Adam Gašpar
  • Michal Horsák
  • Jitka Frodlová
  • Michal Hájek
  • Mária Hajnalová
  • Petra HájkováEmail author


There is still not enough palaeoecological data from the southwestern part of the Western Carpathians, where mountain ridges steeply rise from the dry and warm Pannonian basin. The reason is a low availability of sites with sediments harbouring fossil remains. In the Považský Inovec Mts, two small protected calcareous wetlands occur in different geographical position and contain suitable sediments. One represents a foothill site (initiated ca 13,000 cal. BP) whereas the other a low-mountain site (initiated ca 7,400 cal. BP). We investigated fossil pollen, spores, and macroscopic remains of plants and molluscs from their sediments. We further reviewed archaeological data, constructed a macrophysical climate model (MCM) and confronted it with other palaeoclimatic proxies. Temperate deciduous trees (Quercus, Corylus and Ulmus) occurred since the Allerød, but their expansion was blocked by a harsh climate in Younger Dryas, when Larix, Pinus and Betula nana still occurred. The climate firstly moistened at ca 9,500 cal. BP and more distinctly at ca 8,500 cal. BP, which was reflected by a strong calcium carbonate precipitation and expansion of Tilia cordata t., Hedera helix, and Ustulina. Although the MCM predicted a rather stable climate since 8,000 cal. BP, certain changes in aquatic mollusc abundances may indicate hydrological fluctuations, as they are paralleled by changes in climate humidity indicated by other evidence from the Western Carpathians. Younger hydrological fluctuations may be alternatively explained by human activities as they correspond with macro-charcoal abundance and indicators of wetland openness. During their existence, both fens harboured only few fen plant and mollusc species specialized to low-productive sedge-moss fens. In the Middle Holocene both sites were encroached by woody plants (Alnus, Picea and Salix), as most other spring fens in the Western Carpathians. Contrary to some other spring fens with similar site conditions in the Western Carpathians, few fen specialists established in the study sites since deforestation, presumably because of severe disturbances caused by grazing and/or hemp retting instead of the usual mowing.


Forest development Late glacial Macrophysical climate model (MCM) Plant and mollusc macrofossils Pollen Považský Inovec Mts Western Carpathians 



This study was funded by Masaryk University (Project No. MUNI/M/1790/2014) and partially by the Czech Science Foundation (P504/17-05696S). PH and EJ were further supported by the long-term developmental project of the Czech Academy of Sciences (RVO 67985939). We are grateful to all colleagues and friends that helped us with coring in the field (K. Devánová, V. Horsáková, S. Němejc, L. Petr and S. Rezník). J. Novák helped us with the identification of wood fragments and charcoals. We thank J. Roleček and anonymous referees for valuable comments.

Supplementary material

12224_2018_9324_MOESM1_ESM.doc (1.4 mb)
ESM 1 (DOC 1472 kb)
12224_2018_9324_MOESM2_ESM.doc (56 kb)
ESM 2 (DOC 56 kb)
12224_2018_9324_MOESM3_ESM.docx (160 kb)
ESM 3 (DOCX 159 kb)


  1. Bača R (1990) Ďalšie prieskumy, nálezy a prírastky Balneologického múzea. Archeol Výsk Nálezy Slov 1988:28–29Google Scholar
  2. Bača R, Krupa V (1995) Dokumentácia a prírastky v Balneologickom múzeu. Archeol Výsk Nálezy Slov 1993:21Google Scholar
  3. Beug HJ (2004) Lietfaden der Pollen bestimmung für Mitteleuropa und angrezende Gebiete. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  4. Bialeková D (1989) Pramene k dejinám osídlenia Slovenska z konca 5. až 13. storočia. Archeologický ústav SAV, NitraGoogle Scholar
  5. Birks HH, Birks HJB (2013) Vegetation responses to late-glacial climate changes in western Norway. Preslia 85:215–237Google Scholar
  6. Botta-Dukát Z, Chytrý M, Hájková P, Havlová M (2005) Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77:89–111Google Scholar
  7. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1679–1686CrossRefGoogle Scholar
  8. Bronk Ramsey C. (2009) Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51:1023–1045CrossRefGoogle Scholar
  9. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  10. Bryson AR (2005) Archeoclimatology. In Oliver JE (ed) Encyclopedia of world climatology. Springer Netherlands, pp 58–63CrossRefGoogle Scholar
  11. Bryson AR, DeWall MK (2007) A paleoclimatology workbook: high resolution, site-specific, macrophysical climate modelling. The Mammoth Site of Hot Spring, SD, Inc.Google Scholar
  12. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale Zadenatlas van Nederland. Digital seed atlas of the Netherlands. Barkhuis Publishing, GroningenGoogle Scholar
  13. Cheben I (2006) Tretia etapa výskumu žiarového pohrebiska lužickej kultúry v Trenčíne. Archeol Výsk Nálezy Slov 2004:102–104Google Scholar
  14. Chrastina P (2009) Vývoj využívania krajiny Trenčianskej kotliny a jej horskej obruby (Genesis of land-use in the Trenčianska kotlina and its surrounding mountains). Univerzita Konštantína Filozofa, NitraGoogle Scholar
  15. Dabkowski J, Frodlová J, Hájková P, Dudová L, Horsák M, Hájek M, Petr L, Fiorillo D (2018) Holocene development and climate in the NW White Carpathian: a multidisciplinary approach (including geochemistry, sedimentology and malacology) on Mituchovci tufa in Slovakia. In Colloque Q11 – Au Centre des Enjeux AFEQ-CNF-INQUA, Livret des résumés, pp 36Google Scholar
  16. Dítě D, Hájek M, Svitková I, Košuthová A, Šoltés R, Kliment J (2018) Glacial-relict symptoms in the Western Carpathian flora. Folia Geobotanica (this issue) Google Scholar
  17. Dunn SM, Mackay R (1995) Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. J Hydrol 171:49–73CrossRefGoogle Scholar
  18. Dušek M (1975) Hradisko z doby halštatskej v podhradí. Archeol Výsk Nálezy Slov 1974:46–47.Google Scholar
  19. Eliáš P jr, Hajnalová M, Pažinová N (2005) Floristic composition of Triticum monococcum fields in Transylvania (Romania): preliminary results. In Traditional Agroecosystems ´05: 1st International Conference and Satelite Workshops. September 16–21, 2005, Nitra, Slovakia. SPU, Nitra, pp 127–131Google Scholar
  20. Eliáš P jr, Dítě D, Kliment J, Hrivnák R, Feráková V (2015) Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014) Biologia 70:218–228 Google Scholar
  21. Faegri K, Iversen J (1989) Textbook of pollen analysis. 4th ed. John Wiley & Sons, ChichesterGoogle Scholar
  22. Feurdean A, Perşoiu T, Stevens S, Magyari EK, Onac BP, Markovič S et al. (2014) Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quatern Sci Rev 106:206–224CrossRefGoogle Scholar
  23. Feurdean A, Florescu G, Vannière B, Tanţău I, O‘Hara RB, Pfeiffer M, Hutchinson SM, Gałka M, Moskal-del Hoyo M, Hickler T (2017) Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecol Managem 389:15–26CrossRefGoogle Scholar
  24. Gálová A, Hájková P, Čierniková M, Petr L, Hájek M, Novák J, Rohovec J, Jamrichová E (2016) Origin of a boreal birch bog woodland and landscape development on a warm low mountain summit at the Carpathian-Pannonian interface. The Holocene 26:1112–1125CrossRefGoogle Scholar
  25. Grimm EC (2011) Tilia software v.1.7.16. Illinois State Museum, Springfield ILGoogle Scholar
  26. Grootjans AP, Adema EB, Bleuten W, Joosten H, Madaras M, Janáková M, Middleton B (2006) Hydrological landscape settings of base-rich fen mires and fen meadows an overview. Appl Veg Sci 9:175–184CrossRefGoogle Scholar
  27. Hájek M, Háberová I (2001) Scheuchzerio-Caricetea fuscae. Rastlinné spoločenstvá Slovenska 3, pp 185–273Google Scholar
  28. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755CrossRefGoogle Scholar
  29. Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M (2016) Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quatern Sci Rev 133:48–61CrossRefGoogle Scholar
  30. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelánková B (2012a) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusc macrofossils. Boreas 41:690–706CrossRefGoogle Scholar
  31. Hájková P, Grootjans A, Lamentowicz M, Rybníčková E, Madaras M, Opravilová V, Michaelis D, Hájek M, Wolejko L (2012b) How a Sphagnum fuscum-dominated bog changed into a calcareous fen: unique Holocene history of a Slovak spring-fed mire. J Quatern Sci 27:233–243CrossRefGoogle Scholar
  32. Hájková P, Jamrichová E, Horsák M, Hájek M (2013) Holocene history of a Cladium mariscus-dominated calcareous fen in Slovakia: vegetation stability and landscape development. Preslia 85:289–315Google Scholar
  33. Hájková P, Horsák M, Hájek M, Jankovská V, Jamrichová E, Moutelíková J (2015) Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene 25:702–715CrossRefGoogle Scholar
  34. Hájková P, Pařil P, Petr L, Chattová B, Grygar TM, Heiri O (2016) A first chironomid-based summer temperature reconstruction (13–5 ka BP) around 49°N in inland Europe compared with local lake development. Quatern Sci Rev 141:94–111CrossRefGoogle Scholar
  35. Hájková P, Jamrichová E, Petr L, Dudová L, Roleček J, Gálová A, Dresler P, Novák J, Hájek M (2017) Persistence of a vegetation mosaic in a peripheral region: Could turbulent medieval history disrupt Holocene continuity of extremely species-rich grassland? Veg Hist & Archaeobot 27:591–610. CrossRefGoogle Scholar
  36. Hajnalová E (1980) Nálezy a analýza rastlinných makrozvyškov z archeologických výskumov. Archeol Výsk Nálezy Slov 1978:95–107Google Scholar
  37. Hajnalová M (2012) Archeobotanika doby bronzovej na Slovensku. FF UKF, NitraGoogle Scholar
  38. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Ann Rev Ecol Evol Syst 42:313–333CrossRefGoogle Scholar
  39. Hanzelyová E, Kuzma I, Rajtár J (1997) Pokračovanie leteckej prospekcie na juhozápadnom Slovensku. Archeol Výsk Nálezy Slov 1995:77–80.Google Scholar
  40. Horsák M, Hájková P (2005) The historical development of the White Carpathian spring fens based on palaeomalacological data. In Poulíčková A, Hájek M, Rybníček K (eds) Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc, pp 63–68Google Scholar
  41. Horsák M, Chytrý M, Danihelka J, Kočí M, Kubešová S, Lososová Z, Otýpková Z, Tichý L (2010) Snail faunas in the Southern Ural forests and their relations to vegetation: an analogue of the Early Holocene assemblages of Central Europe? J Molluscan Stud 76:1–10CrossRefGoogle Scholar
  42. Horsák M, Juřičková L, Picka J (2013) Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics. Kabourek, ZlínGoogle Scholar
  43. Horsák M, Čejka T, Juřičková L, Beran L, Horáčková J, Hlaváč JČ, Dvořák L, Hájek O, Divíšek J, Maňas M, Ložek V (2018) Check-list and distribution maps of the molluscs of the Czech and Slovak Republics. Available at (checklist updated on 7 March 2018, maps updated on 7 March 2018)
  44. Horsáková V, Hájek M, Hájková P, Dítě D, Horsák M (2018) Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species. Diversity and Distributions 24:742–754. CrossRefGoogle Scholar
  45. Iversen J (1944) Viscum, Hedera and Ilex as climate indicators: a contribution to the study of the post-glacial temperature climate. Geologiska Föreningen i Stockholm Förhandlingar 66:463–483CrossRefGoogle Scholar
  46. Jamrichová E, Hájková P, Horsák M, Rybníčková E, Lacina M, Hájek M (2014a) Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Veg Hist & Archaeobot 23:497–513CrossRefGoogle Scholar
  47. Jamrichová E, Potůčková A, Horsák M, Hajnalová M, Barta P, Tóth P, Kuneš P (2014b) Early occurrence of temperate oak-dominated forest in the northern part of the Little Hungarian Plain, SW Slovakia. The Holocene 24:1810–1824CrossRefGoogle Scholar
  48. Jamrichová E, Petr L, Jiménez-Alfaro B, Jankovská V, Dudová L, Pokorný P, Kołaczek P, Zernitskaya V, Čierniková M, Břízová E, Hájková P, Hájek M (2017) Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J Biogeogr 44:2386–2397CrossRefGoogle Scholar
  49. Jankovská V (1971) The development of vegetation on the western slopes of the Bohemian-Moravian Uplands during the Late Holocene Period: a study based on pollen and macroscopic analyses. Folia Geobot Phytotax Bohemoslov 6:281–303CrossRefGoogle Scholar
  50. Juggins S (2003) C2 User Guide, Version 1.5. Software for ecological and paleoecological data analysis and visualization. University of Newcastle, Newcastle upon TyneGoogle Scholar
  51. Juřičková L, Horsák M, Horáčková J, Abraham V, Ložek V (2014) Patterns of land-snail succession in Central Europe over the last 15,000 years: main changes along environmental, spatial and temporal gradients. Quatern Sci Rev 93:155–166CrossRefGoogle Scholar
  52. Juřičková L, Pokorný P, Hošek J, Horáčková J, Květoň J, Zahajská P, Jansová A, Ložek V (2017) Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28:583–594CrossRefGoogle Scholar
  53. Kolář J, Kuneš P, Szabó P, Hajnalová M, Svitavská-Svobodová H, Macek M, Tkáč P (2016) Population and forest dynamics during the Central European Eneolithic (4500–2000 BC). Archaeol Anthropol Sci 8:1–12CrossRefGoogle Scholar
  54. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P (2015) The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quatern Sci Rev 116:15–27CrossRefGoogle Scholar
  55. Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17:1185–1196CrossRefGoogle Scholar
  56. Latałowa M, Pędziszewska A, Maciejewska E, Święta-Musznicka J (2013) Tilia forest dynamics, Kretzschmaria deusta attack, and mire hydrology as palaeoecological proxies for mid-Holocene climate reconstruction in the Kashubian Lake District (N Poland). The Holocene 23:667–677CrossRefGoogle Scholar
  57. Ložek V (1950) Měkkýši maďarovské kulturní vrstvy na krasovém ostrohu Bašta u Ivanovců nad Váhem. In Sborník MSS 43–45. MSS, Martin, pp 199–200Google Scholar
  58. Ložek V (1964) Quartärmollusken der Tschechoslowakei (Vol. 31). Nakladatelství Československé akademie věd, Praha, p. 375Google Scholar
  59. Magyari E, Jakab G, Rudner E, Sümegi P (1999) Palynological and plant macrofossil data on Late Pleistocene short-term climatic oscillations in NE-Hungary. Acta Palaeobot 2:491–502Google Scholar
  60. Magyari E, Buczkó K, Jakab G, Braun M, Pál Z, Karátson D, Pap I (2009) Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes. Hydrobiologia 631:29–63CrossRefGoogle Scholar
  61. Magyari E, Chapman J, Fairbairn AS, Francis M, de Guzman M (2012) Neolithic human impact on the landscapes of North-East Hungary inferred from pollen and settlement records. Veg Hist & Archaeobot 21:279–302CrossRefGoogle Scholar
  62. Marhold K, Hindák F (1998) Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, BratislavaGoogle Scholar
  63. Medzihradszky Z (2005) Holocene vegetation history and human activity in the Kis-Balaton area, W. Hungary. Stud Bot Hung 36:77–100Google Scholar
  64. Nešporová T (1999) Regionálny prieskum v Trenčianskom kraji. Archeol Výsk Nálezy Slov 1997:120–121Google Scholar
  65. Nešporová T (2000) Neolitické sídlisko v Soblahove. Archeol Výsk Nálezy Slov 1999:90–91Google Scholar
  66. Nešporová T (2003) Prieskum vo Veľkej Hradnej. Archeol Výsk Nálezy Slov 2002:100–101Google Scholar
  67. Pidek IA (2013) Pollen-based vegetation and climate reconstruction of the Ferdynandovian sequence from Łuków (eastern Poland). Acta Palaeobot 53:115–138CrossRefGoogle Scholar
  68. Pieta K (2006) Hradiská Bojná II a Bojná III. Významné sídlisko z doby sťahovania národov a opevnenia z 9. storočia. In Pieta K, Ruttkay A, Ruttkay M (eds) Bojná. Hospodárske a politické centrum Nitrianskeho kniežatstva / Wirtschaftliches und politisches Zentrum des Fürstentums von Nitra. Archeologický ústav SAV – Ponitrianske múzeum, NitraGoogle Scholar
  69. Pieta K, Ruttkay A (2006) Bojná – mocenské a christianizačné centrum Nitrianskeho kniežatstva / Bojná – neues Macht- und Christianisierungszentrum des Fūrstentums von Nitra. Vorbericht. In Pieta K, Ruttkay A, Ruttkay M (eds) Bojná. Hospodárske a politické centrum Nitrianskeho kniežatstva / Wirtschaftliches und politisches Zentrum des Fürstentums von Nitra. Archeologický ústav SAV – Ponitrianske múzeum, NitraGoogle Scholar
  70. Pieta K, Haruštiak J, Jakubčinová M, Vangľová T (2011) Výskum včasnostredovekého hradiska Bojná I v rokoch 2007 a 2008. Archeol Výsk Nálezy Slov 2008:205–210Google Scholar
  71. Pieta K, Haruštiak J, Jakubčinová M, Vangľová T (2013) Výskum včasnostredovekej aglomerácie Bojná v roku 2009. Archeol Výsk Nálezy Slov 2009:182–187Google Scholar
  72. Pieta K, Robak Z, Jakubčinová M and Vangľová T (2015) Výskum včasnostredovekej aglomerácie Bojná. Archeol Výsk Nálezy Slov 2010:182–184Google Scholar
  73. Poschlod P (2015) The origin and development of the central European man-made landscape, habitat and species diversity as affected by climate and its changes – a review. Interdisciplinaria archaeologica 6:197–221CrossRefGoogle Scholar
  74. Procházka J, Pišút P, Jamrichová E. (2015) Zazemňovanie Gbelčianskej depresie počas holocénu vo svetle analýzy rastlinných makrozvyškov (profil Nová Vieska 2). Geogr J 67:85–103Google Scholar
  75. Rasmussen SO, Vinther BM, Clausen HB, Andersen KK (2007) Early Holocene climate oscillations recorded in three Greenland ice cores. Quatern Sci Rev 26:1907–1914CrossRefGoogle Scholar
  76. Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord. Supplement 1. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  77. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté Ch, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney ChSM, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  78. Ruttkay A, Rejholec E (1982) Výsledky prieskumu v údolí Bebravy a v Ponitrí. Archeol Výsk Nálezy Slov 1981:258–259Google Scholar
  79. Rybníček K, Rybníčková E (2008) Upper Holocene dry land vegetation in the Moravian-Slovakian borderland (Czech and Slovak Republics). Veg Hist & Archaeobot 17:701–717CrossRefGoogle Scholar
  80. Rybníčková E, Rybníček K (1972) Erste Ergebnisse palaogeobotanischer Untersuchungen des Moores bei Vracov, Südmähren. Folia Geobot Phytotax Bohemoslov 7:285–308CrossRefGoogle Scholar
  81. Somogyi J, Hodálová I (2002) Nová lokalita vzácnych rastlín na Záhorí (západné Slovensko). Bull Slov Bot Spoločn Bratislava 24:143–145Google Scholar
  82. Stammel B, Kiehl K, Pfadenhauer J (2003) Alternative management on fens: response of vegetation to grazing and mowing. Appl Veg Sci 6:245–254CrossRefGoogle Scholar
  83. Starkel L, Michczynska DJ, Krapiec M, Margielewski W, Nalepka D, Pazdur A (2013) Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40:1–20CrossRefGoogle Scholar
  84. Sümegi P, Gulyás S, Jakab G (2008) Holocene paleoclimatic and paleohydrological changes in Lake Balaton as inferred from a complex quantitative environmental historical study of a lacustrine sequence of the Szigliget embayment. Doc Praehist 35:33–43CrossRefGoogle Scholar
  85. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quatern Sci Rev 25:526–549CrossRefGoogle Scholar
  86. Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:1–105Google Scholar
  87. Valsecchi V, Fisinger W, Tinner W, Ammann B (2008) Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). The Holocene 18:603–616CrossRefGoogle Scholar
  88. Velichkevich FY, Zastawniak E (2006) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 1. Pteridophytes and monocotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  89. Velichkevich FY, Zastawniak E (2008) Atlas of the Pleistocene vascular plant macrofossils of Central and Eastern Europe. Part 2. Herbaceous dicotyledons. W. Szafer Institute of Botany, Polish Academy of Sciences, KrakówGoogle Scholar
  90. Vychronová M (2011) Středověké využití lnu setého a konopě seté dle archeologických nálezů. Bachelor thesis. University of West Bohemia, Plzeň, Czech RepublicGoogle Scholar
  91. Walker MJ, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ et al. (2012) Formal subdivision of the Holocene Series/Epoch: a discussion paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quatern Sci 27:649–659CrossRefGoogle Scholar
  92. Zlinská J (1994) Das Juncetum subnodulosi W. KOCH 1926 in der Slowakei. Phyton (Horn) 33:295–303Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Laboratory of Paleoecology, Institute of BotanyCzech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Archaeology and Museology, Faculty of ArtsMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Archaeology, Faculty of ArtsConstantine the Philosopher University in NitraNitraSlovakia

Personalised recommendations