Advertisement

Folia Geobotanica

, Volume 53, Issue 3, pp 317–332 | Cite as

Early vegetation succession on gravel bars of Czech Carpathian streams

  • Veronika Kalníková
  • Kryštof Chytrý
  • Milan Chytrý
Article

Abstract

Rivers with a natural flooding regime and gravel accumulations are an important natural habitat endangered by regulations and other types of human impact. Succession after disturbances by floods creates a mosaic of different vegetation types, some of them containing rare specialist species. We studied vegetation succession and changes in plant diversity on river gravel bars of four streams in the Western Carpathians and their foothills in the eastern Czech Republic. This area experienced extreme 50-year flood event in May 2010. Gravel bar vegetation was destroyed, some of the former bars were covered by sediments, and some new bars arose. We sampled gravel bar vegetation two months after the floods and repeated the sampling on each site during the next three years. Initial vegetation has developed through a sparse and species-rich stage into denser stands with more shade-tolerant species. In the fourth year, tall herbs, such as Urtica dioica, Phalaris arundinacea and the alien Impatiens glandulifera, dominated the communities, but shrub vegetation started to develop only in a few places. Species capable of vegetative dispersal prevailed over species dispersed by seeds only. Altitude and size of gravel/stone particles were identified as important factors affecting vegetation succession. The succession ran faster on gravelly substrates at lower altitudes than on stony substrates at higher altitudes. Although the studied streams are partly influenced by human interventions and host only few gravel bar specialists, they are of considerable conservation importance.

Keywords

Disturbance Floods Gravel bar vegetation Moravskoslezské Beskydy Mts Plant communities Riverine habitats Succession rate Western Carpathians 

Notes

Acknowledgements

We thank Karel Prach and Martin Večeřa for valuable comments on the manuscript, Svatava Kubešová and Jitka Laburdová for their help with bryophyte identification, Vít Grulich and Vladimír Řehořek for identification of some specimens of vascular plants, Ondřej Hájek for preparing the map, and Jakub Těšitel for help with ordination analysis. The study was supported by the Czech Science Foundation (project 14-36079G, Centre of Excellence Pladias).

Supplementary material

12224_2018_9323_MOESM1_ESM.docx (5.6 mb)
ESM 1 (DOCX 5718 kb)

References

  1. Anderson KJ (2007) Temporal patterns in rates of community change during succession. Amer Naturalist 169:780–793CrossRefGoogle Scholar
  2. Babej J (2012) Biogeomorfologické mapování samovolně renaturalizovaného úseku Spojené Bečvy u Hustopečí nad Bečvou (Biogeomorphological mapping of naturally recovered section of the Bečva River in the vicinity of Hustopeče nad Bečvou). Master thesis, Masarykova univerzita, BrnoGoogle Scholar
  3. Babej J, Máčka Z, Ondrejka P, Peterová P (2016) Surface grain size variation within gravel bars: a case study of the River Opava, Czech Republic. Geogr Fis Dinam Quatern 39:3–12Google Scholar
  4. Bätz N, Verrecchia EP & Lane SN (2015) The role of soil in vegetated gravelly river braid plains: more than just a passive response? Earth Surf Processes Landforms 40:143–156CrossRefGoogle Scholar
  5. Brázdil R, Kirchner K (2007) Vybrané přírodní extrémy a jejich dopady na Moravě a ve Slezsku (Selected natural extremes and their impacts in Moravia and Silesia). Masarykova univerzita, BrnoGoogle Scholar
  6. Bubík M, Krejčí O, Kirchner K (2004) Geologická minulost a přítomnost Frýdeckomístecka (Geological past and present of the Frýdek-Místek Region). Muzeum Beskyd, Frýdek MístekGoogle Scholar
  7. Chytrý M (ed) (2007) Vegetace České republiky 1. Travinná a keříčková vegetace (Vegetation of the Czech Republic 1. Grassland and Heathland Vegetation). Academia, PrahaGoogle Scholar
  8. Chytrý M (ed) (2009) Vegetace České republiky 2. Ruderální, plevelová, skalní a suťová vegetace (Vegetation of the Czech Republic 2. Ruderal, Weed, Rock and Scree vegetation) Academia, PrahaGoogle Scholar
  9. Chytrý M (ed) (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace (Vegetation of the Czech Republic 3. Aquatic and Wetland Vegetation). Academia, PrahaGoogle Scholar
  10. Chytrý M (ed) (2013) Vegetace České republiky 4. Lesní a křovinná vegetace (Vegetation of the Czech Republic 4. Forest and Scrub Vegetation). Academia, PrahaGoogle Scholar
  11. Chytrý M, Rafajová M (2003) Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15Google Scholar
  12. Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278Google Scholar
  13. Corenblit D, Steiger J, Gurnell, AM, Tabacchi E, Roques L (2009) Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surface Processes Landforms 34:1790–1810CrossRefGoogle Scholar
  14. Danihelka J, Chrtek J Jr, Kaplan Z (2012) Checklist of vascular plants of the Czech Republic. Preslia 84:647–811Google Scholar
  15. Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Tockner K, Ward JV (1999) A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetl Ecol Managem 7:141–153CrossRefGoogle Scholar
  16. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  17. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248Google Scholar
  18. European Commission (2013) Interpretation manual of European Union habitats. EUR 28. European Commission, BrusselsGoogle Scholar
  19. Frank D, Klotz S (1990) Biologisch-ökologische Daten zur Flora der DDR. Martin-Luther-Universität, Halle-WittenbergGoogle Scholar
  20. Galia T, Hradecký J (2012) Critical conditions for beginning of coarse sediment transport in torrents of Moravskoslezské Beskydy Mts (Western Carpathians). Carpathian J Earth Environm Sci 7:5–14Google Scholar
  21. Gilvear DJ, Cecil J, Parsons H (2000) Channel change and vegetation diversity on a low-angle alluvial fan, River Feshie, Scotland. Aquatic Conservation 10:53–71CrossRefGoogle Scholar
  22. Gilvear DJ, Francis R, Willby N, Gurnell AM (2008) Gravel bars: a key habitat of gravel-bed rivers for vegetation. In Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restauration. Elsevier, Amsterdam, pp 677–700Google Scholar
  23. Gostner W, Paternolli M, Schleiss A J, Scheidegger C, Werth S (2017) Gravel bar inundation frequency: an important parameter for understanding riparian corridor dynamics. Aquatic Sci 79:1–15CrossRefGoogle Scholar
  24. Grime JP (1979) Plant strategies and vegetation processes. John Wiley and Sons, ChichesterGoogle Scholar
  25. Grohmanová L (2012) Succession and the development of alluvial communities after a flood in 1997. J Landscape Ecol 5:29–49Google Scholar
  26. Grulich V (2012) Red List of vascular plants of the Czech Republic. Preslia 84:631–645Google Scholar
  27. Gurnell AM, Petts GE, Hannah DM, Smith BP, Edwards PJ, Kollmann J, Ward JV, Tockner, K. (2001) Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes Landforms 26:31–62CrossRefGoogle Scholar
  28. Gurnell AM, Tockner K, Edwards P, Petts GE (2005) Effects of deposited wood on biocomplexity of river corridors. Frontiers Ecol Environm 3:377–382CrossRefGoogle Scholar
  29. Gurnell AM, Surian N, Zanoni L (2009) Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sci 71:253–265CrossRefGoogle Scholar
  30. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  31. Huston M (1979) A general hypothesis of species diversity. Amer Naturalist 113:81–101CrossRefGoogle Scholar
  32. Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, Tahvanainen T, Valderrabano M, Acosta A, Aronsson M, Arts G, Attorre F, Bergmeier E, Bijlsma R-J, Bioret F, Biţă-Nicolae C, Biurrun I, Calix M, Capelo J, Čarni A, Chytrý M, Dengler J, Dimopoulos P, Essl F, Gardfjell H, Gigante D, Giusso del Galdo G, Hájek M, Jansen F, Jansen J, Kapfer J, Mickolajczak A, Molina JA, Molnár Z, Paternoster D, Piernik A, Poulin B, Renaux B, Schaminée JHJ, Šumberová K, Toivonen H, Tonteri T, Tsiripidis I, Tzonev R, Valachovič M (2016) European Red List of Habitats. Part 2. Terrestrial and freshwater habitats. Publications Office of the European Union, LuxembourgGoogle Scholar
  33. Jeník J (1955) Sukcese rostlin na náplavech řeky Belé v Tatrách (Succession of plants on gravel bars of the Belá River in the Tatra Mountains). Acta Univ Carol 4:1–59Google Scholar
  34. Kalníková V, Eremiášová R (2013) Rozšíření třtiny pobřežní (Calamagrostis pseudophragmites (Haller f.) Koeler) na řece Ostravici (Distribution of Calamagrostis pseudophragmites (Haller f.) Koeler along the Ostravice River). Acta Carpathica Occid 4:3–14Google Scholar
  35. Karrenberg S, Kollmann J, Edwards PJ, Gurnell AM, Petts GE (2003) Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic Appl Ecol 4:157–166CrossRefGoogle Scholar
  36. Klečka J (2004) Early stadiums of floodplain forest succession in a wide river beds upon an example of Bečva. J Forest Sci 50:338–352CrossRefGoogle Scholar
  37. Klečková L (2013) Genetická variabilita původních populací vrby šedé (Salix elaeagnos) v České republice (Genetic variability of native populations of Rosemary willow (Salix elaeagnos) in the Czech Republic). Master thesis, Univerzita Palackého, OlomoucGoogle Scholar
  38. Kopecký K (1957) Sukcese rostlinných společenstev na náplavech Metuje a Olešenky v okolí Nového Města n. Met. (Succession of plant communities on fluvial deposits of the Metuje and Olešenka rivers in the vicinity of Nové Město n. Met.). Preslia 29:51–63Google Scholar
  39. Kopecký K (1961) Fytoekologický a fytocenologický rozbor porostů Phalaris arundinacea L. na náplavech Berounky (Phytoecological and phytosociological study of Phalaris arundinacea L. vegetation on fluvial deposits of Berounka River). Rozpr ČSAV, Řada Mat Přír Věd 71:1–105Google Scholar
  40. Kopecký K (1969) Calamagrostis pseudophragmites (Hall. Fil.) Koel. na Divoké Orlici v severovýchodních Čechách (Calamagrostis pseudophragmites (Hall. Fil) on Divoká Orlice River in North-eastern Bohemia). Zprávy Českoslov Bot Společn 4:113–117Google Scholar
  41. Kučera J, Váňa J, Hradílek Z (2012) Bryophyte flora of the Czech Republic: updated checklist and Red List and a brief analysis. Preslia 84:813–850Google Scholar
  42. Lacina J (2007) Desetiletý vývoj vegetačního krytu povodňového koryta Bečvy se zvláštním zřetelem na ekotony (The ten-year development of vegetation cover of the Bečva river flood channel with special regard to ecotones). Říční krajina 5:145–151Google Scholar
  43. Loučková B (2011) Vegetation-landform assemblages along selected rivers in the Czech Republic, a decade after a 500-year flood event. River Res Applic 28:1275–1288CrossRefGoogle Scholar
  44. Montgomery DR, Buffington JM (1998). Channel processes, classification, and response. In Naiman RJ and RE Bilby (eds) River ecology and management: lessons from the Pacific coastal ecoregion, Springer, New York, pp 13–42Google Scholar
  45. Muhar S, Jungwirth M, Unfer G, Wiesner C, Poppe M, Schmutz S, Heohensinner S, Habersack H. (2007) Restoring riverine landscapes at the Drau River: successes and deficits in the context of ecological integrity. In Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restauration. Elsevier, Amsterdam, pp 703–738CrossRefGoogle Scholar
  46. Müller N (1995) River dynamics and floodplain vegetation and their alterations due to human impact. Arch Hydrobiol Suppl 9:477–512Google Scholar
  47. Müller N, Scharm S (2001) The importance of seed rain and seed bank for the recolonization of gravel bars in alpine rivers. In Okuda S. (ed.) Studies on the vegetation of alluvial plants. Yokohama National University, pp 127–140Google Scholar
  48. Muotka T, Virtanen R (1995) The stream as a habitat templet for bryophytes: speciesʼ distributions along gradients in disturbance and substratum heterogeneity. Freshwater Biol 33:141–160CrossRefGoogle Scholar
  49. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2017) Vegan: community ecology package. R package version 2.4-2. Available at https://cran.r-project.org/package=vegan
  50. Pánek T, Lenart J (2016) Landslide landscape of the Moravskoslezské Beskydy Mountains and their surroundings. In Pánek T, Hradecký J (eds) Landscapes and landforms of the Czech Republic. Springer, Dordrecht, pp 347–359Google Scholar
  51. Pettit NE, Froend RH (2001) Variability in flood disturbance and the impact on riparian tree recruitment in two contrasting river systems. Wetlands Ecol Managem 9:13–25CrossRefGoogle Scholar
  52. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135CrossRefGoogle Scholar
  53. Pielou EC (1975) Ecological diversity. Wiley, New YorkGoogle Scholar
  54. Planty-Tabacchi AM, Tabacchi E, Naiman RJ, Deferrari C, Décamps H (1996) Invasibility of species-rich communities in riparian zones. Conservation Biol 10:598–607CrossRefGoogle Scholar
  55. Prach K. (1990) Směna dominant a rychlost sukcese (Dominant species exchange and rate of succession). Preslia 62:199–204Google Scholar
  56. Prach K (1994) Vegetation succession on river gravel bars across the Northwestern Himalayas, India. Arctic Alpine Res 26:349–353CrossRefGoogle Scholar
  57. Prach K, Pyšek P (1994) Clonal plants – what is their role in succession? Folia Geobot Phytotax 29:307–320CrossRefGoogle Scholar
  58. Prach K, Řehounková K (2006) Vegetation succession over broad geographical scales: Which factors determine the patterns? Preslia 78:469–480Google Scholar
  59. Prach K, Pyšek P, Šmilauer P (1993) On the rate of succession. Oikos 66:343–346CrossRefGoogle Scholar
  60. Prach K, Petřík P, Brož Z, Song JS (2014) Vegetation succession on river sediments along the Nakdong River, South Korea. Folia Geobot 49:507–519CrossRefGoogle Scholar
  61. Prach K, Tichý L, Lencová K, Adámek M, Koutecký T, Sádlo J, Bartošová A, Novák J, Kovář P, Jírová A, Šmilauer P, Řehounková K (2016) Does succession run towards potential natural vegetation? An analysis across seres. J Veg Sci 27:515–523CrossRefGoogle Scholar
  62. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org
  63. Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biol 47:559–579CrossRefGoogle Scholar
  64. Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity & Distrib 13:126–139CrossRefGoogle Scholar
  65. Siegrist R. (1913): Die Auenwälder der Aare. Mit besonderer Berücksichtigung ihres genetischen Zusammenhanges mit anderen flussbegleitenden Pflanzengesellschaften. Doctoral thesis, ETH, ZürichGoogle Scholar
  66. Skokanová H, Unar P, Janík D, Havlíček M (2015) Potential influence of river engineering in two West Carpathian rivers on the conservation management of Calamagrostis pseudophragmites. J Nat Conservation 25:42–50CrossRefGoogle Scholar
  67. Sochor M, Vašut RJ, Bártová E, Majeský Ľ, Mráček J (2013) Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet Genomes 9:1193–1205CrossRefGoogle Scholar
  68. StatSoft Inc. (2001) STATISTICA (data analysis software system), version 13. Available at www.statsoft.com
  69. Šigutová L (2009) Vegetace říčních náplavů vybraných toků Moravskoslezských Beskyd (River bank vegetation of selected streams in the Moravskoslezské Beskydy Mts). Master thesis, Palacký University, OlomoucGoogle Scholar
  70. Šilhán K (2012) Frequency of fast geomorphological processes in high-gradient streams: case study from the Moravskoslezské Beskydy Mts (Czech Republic) using dendrogeomorphic methods. Geochronometria 39:122–132CrossRefGoogle Scholar
  71. Škarpich V, Hradecký J, Dušek R (2013) Complex transformation of the geomorphic regime of channels in the forefield of the Moravskoslezské Beskydy Mts: case study of the Morávka River (Czech Republic). Catena 111:25–40CrossRefGoogle Scholar
  72. Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  73. Štercl P, Řehánek T, Winkler I, Soukalová E (2011) Vyhodnocení povodní v květnu a červnu 2010 (Assessment of the floods in May and June 2010). VÚV TGM, Praha.Google Scholar
  74. ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user's guide: software for ordination (version 5.0). Biometris, IthacaGoogle Scholar
  75. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  76. Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Processes 14:2861–2883CrossRefGoogle Scholar
  77. Tockner K, Ward JV, Arscott DB, Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Maiolini B (2003) The Tagliamento River: a model ecosystem of European importance. Aquatic Sci 65:239–253CrossRefGoogle Scholar
  78. Tockner K, Paetzold A, Karaus U, Claret C, Zettel J (2006) Ecology of braided rivers. In Smith GHS, Best JL, Bristow CS, Petts GE (eds) Braided rivers: process, deposits, ecology and management. Blackwell Publishing, Oxford, pp 339–359Google Scholar
  79. Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge, pp 45–61CrossRefGoogle Scholar
  80. Tolasz R (ed) (2007) Atlas podnebí Česka (Climate atlas of Czechia). Český hydrometeorologický ústav, Univerzita Palackého, Praha, Olomouc.Google Scholar
  81. Török P, Matus G, Papp M, Tóthmérész B (2008) Secondary succession of overgrazed Pannonian sandy grasslands. Preslia 80:73–85Google Scholar
  82. Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523CrossRefGoogle Scholar
  83. Uziębło AK (2011) Petasites kablikianus Tausch ex Berchtold as a pioneer species and its abilities to colonise initial habitats. Wydawnictwo Uniwersytetu Śląskiego, KatowiceGoogle Scholar
  84. Uziębło AK, & Barć A (2015) Alluvial gravel bars as an example of habitat of the widest ecological spectrum in the mountain regions – a case of carpathians, southern poland. Ecologia Balkanica 7:1–11Google Scholar
  85. Vannote RL, Minshall GW, Cummins KW, Sedell JR (1980) The River Continuum Concept. Canad J Fish Aquatic Sci 37:130–137CrossRefGoogle Scholar
  86. Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshwater Biol 46:807–819CrossRefGoogle Scholar
  87. Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeGoogle Scholar
  88. Wardle P (1980) Primary succession in Westland National Park and its vicinity, New Zealand. New Zealand J Bot 18:221–232CrossRefGoogle Scholar
  89. Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In Whittaker RH (ed), Classification of plant communities. W. Junk, The Hague, pp 287–399CrossRefGoogle Scholar
  90. Zaliberová M (1982) Ufervegetation des Poprad-Flussgebietes. In Špániková A, Zaliberová M, Die Vegetation des Poprad-Flussgebietes (die Becken Popradská kotlina und Ľubovnianska kotlina). Vegetácia ČSSR, B5. Veda, Bratislava, pp 131–302Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations