Folia Geobotanica

, Volume 52, Issue 2, pp 175–197 | Cite as

Longitudinal changes in species composition of forests and grasslands across the North Asian forest steppe zone

  • Nikolay Lashchinskiy
  • Andrey Korolyuk
  • Natalia Makunina
  • Oleg Anenkhonov
  • Hongyan Liu
Article

Abstract

In the forest-steppe zone, the plant species composition under the forest, especially birch, canopy can be quite similar to that of zonal grasslands. Here we synthesize, for the first time, plant compositional data for forests and grasslands across the entire forest-steppe zone with the aim to address the questions how different are local species pools across different parts of the Asian forest-steppe zone and to what extent is the species composition of forests and grasslands similar and whether the degree of a difference between forests and grasslands is consistent along a large longitudinal gradient. To answer these questions, a transect of about 5,000 km was stretched from the west to the east, involving nine key areas. Based on 2,000 vegetation-plot records, we calculated Bray-Curtis Coefficients between forests and grasslands and between the individual areas. NMDS was used to compare species pools of forests and grasslands in the individual key areas in a gradient space. The forest and grassland floras differed in species composition in the individual areas, but the forests and grasslands of the same area displayed similar positions along the principal NMDS axis. We observed rather steep compositional changes along the longitudinal gradient, but quite a large set of species was shared between the key areas from the Ural Mountains to the Yenisei River. The North Asian forest-steppe of Western and Central Siberia can hence be considered a single entity in terms of species composition at the species pool level. Eastward from the Yenisei river, the species composition of both grasslands and forests changed suddenly, mirroring an important biogeographical boundary. Our results suggest that the forest-steppe zone should be viewed as a single biome that is characterized by an alteration of two compositionally and structurally distinct habitats, forest and grasslands, which, however, show similar patterns in terms of species pool size and local diversity.

Keywords

forest-steppe landscape floristic heterogeneity quantitative floristic methods 

References

  1. Anenkhonov OA, Korolyuk AYu (2011) Syntaxonomy and ecologo-geographical peculiarities of forest communities from the West Transbaikalian forest-steppe. In Otechestvennaia geobotanika: osnovnye vechi i perspektivy. Materialy Vserossiiskoi nauchnoi konferentcii s mezhdunarodnym uchastiem (Sankt-Peterburg, 20–24 sentiabria 2011). V. 1. Sankt-Peterburg 11–14 [in Russian]Google Scholar
  2. Bray JR, Curtis JT (1957) An ordination of the upland forest of the Southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  3. Cherepanov CK (1995) Higher vascular plants of Russia and contiguous countries. Sankt-Peterburg [in Russian]Google Scholar
  4. Chytrý M, Danihelka J, Ermakov N, Hájek M, Hájková P, Kočí M, Kubešová S, Lustyk P, Otýpková Z, Popov D, Roleček J, Řezníčková M, Šmarda P, Valachovič M (2007) Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecol Biogeogr 16:668–678CrossRefGoogle Scholar
  5. Chytrý M, Danihelka J, Kubešová S, Lustyk P, Ermakov N, Hájek M, Hájková P, Kočí M, Otýpková Z, Roleček J, Řezníčková M, Šmarda P, Valachovič M, Popov D, Pišút I (2008) Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia Pl Ecol 196:61–83CrossRefGoogle Scholar
  6. Chytrý M, Ermakov N, Danihelka J, Hájek M, Hájková P, Horsák M, Koči M, Kubešová S, Lustyk P, Otýpková Z, Pelanková B, Valachovič M, Zelený D (2012) High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia J Veg Sci 23:605–616CrossRefGoogle Scholar
  7. Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records) Preslia 87:217–278Google Scholar
  8. Coop JD, Givnish TJ (2007) Gradient analysis of reversed treelines and grasslands of the Valles Caldera, New Mexico. J Veg Sci 18:43–54CrossRefGoogle Scholar
  9. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis Agric Eco-Syst Environm 182:1–14CrossRefGoogle Scholar
  10. Dymina GD (1989) Materials for the floristic classification of West Siberian vegetation (Left bank of the Ob river in Novosibirsk area). Novosibirsk [in Russian]Google Scholar
  11. Ermakov NB (2003) North Asian boreal vegetation diversity. Hemiboreal forests. Classification and ordination. Novosibirsk [in Russian]Google Scholar
  12. Ermakov NB, Makunina NI, Maltseva TV (1997) Characteristics of four birch forest associations from forest-steppe between Ob’ and Tom’ rivers. Novosibirsk [in Russian]Google Scholar
  13. Gorchakovskiy PL (1949) Taiga and forest-steppe birch forests from an area nearby Ob’ river In Sbornik trudov po lesnomu khoziaistvu. Sverdlovsk, pp 12–36 [in Russian]Google Scholar
  14. Illyes E, Chytrý M, Botta-Dukát Z, Jandt U, Škodová I, Janišová M, Willner W, Hájek O (2007) Semi-dry grasslands along a climatic gradient across Central Europe: vegetation classification with validation. J Veg Sci 18:835–846CrossRefGoogle Scholar
  15. Janišová M, Michalcová D, Bacaro G, Ghisla A (2014) Landscape effects on diversity of semi-natural grasslands. Agric Eco-Syst Environm 182:47–58CrossRefGoogle Scholar
  16. Kleopov YD (1990) Analysis of the flora of the broadleaved forests in the European part of the USSR. Naukova Dumka. Kiev [in Russian]Google Scholar
  17. Korolyuk AYu (1992) Large-scale vegetation mapping of Baraba lowland using aerophoto and space images. In Geobotanicheskoe kartografirovanie. Leningrad, pp 69–74 [in Russian]Google Scholar
  18. Korolyuk AYu (1993) Syntaxonomy of West Siberian vegetation. 2. Meadow, steppe and forest vegetation. Novosibirsk [in Russian]Google Scholar
  19. Korolyuk AYu (2014) Festuco-Brometea communities on West Siberian plain. Rastitel’n Rossii 25:45–70 [in Russian]Google Scholar
  20. Krylov GV (1953) Birch forests from Tomsk area and their types. Novosibirsk [in Russian]Google Scholar
  21. Kuminova AV (1960) Vegetation cover of Altai. Novosibirsk [in Russian]Google Scholar
  22. Kuminova AV (1963) The main patterns of vegetation cover distribution in south-eastern part of the West Siberian plain. In Rastitel’nost’ stepnoi i lesostepnoi zon Zapadnoi Sibiri. Novosibirsk. Trudi CSBG. pp 7–34 [in Russian]Google Scholar
  23. Kuminova AV, Zvereva GA, Maskaev JuM, Pavlova GG, Sedel'nikov VP, Koroleva AS, Nejjfel'd EhI, Tanzybaev MG, Chizhikova NM, Lamanova TG (1976) Vegetation of Khakassia. NovosibirskGoogle Scholar
  24. Kuminova AV, Sedel'nikov VP, Maskaev JuM, Shoba VA, Ershova EhA, Namzalov BB, Pavlova GG, Mal'ceva TV, Parshutina LP (1985) Vegetation of natural hayfields and pastures of Tuva ASSR. NovosibirskGoogle Scholar
  25. Lapshina EI (1963) Forest-steppe birch forests of the south-eastern part of the West Siberian plain. In Rastitel'nost stepnoi i lesostepnoi zon Zapadnoi Sibiri. Novosibirsk. Trudi CSBG. pp 103–130 [in Russian]Google Scholar
  26. Lashchinskiy NN (2009) Vegetation of Salair ridge. Novosibirsk [in Russian]Google Scholar
  27. Lashchinskiy NN, Makunina NI (2011) Vegetation. In Rastitel'nyi mir Karakanskogo khrebta. Novosibirsk, pp 15–32 [in Russian]Google Scholar
  28. Lashchinskiy NN, Makunina NI, Pisarenko OYu, Gulyaeva AF (2011) Landscape-forming vegetation of the northern part of the Melafir horseshoe. In Rastitel’n Mir Aziatsk Rossii 2:85–99 [in Russian]Google Scholar
  29. Lavrenko EM (2000) USSR steppes. In Izbrannie trudi. Sankt-Peterburg, pp 11–222 [in Russian]Google Scholar
  30. Lavrenko EM, Sochava VB (eds) (1956) Vegetation cover of the USSR. Moskva–Leningrad. [in Russian]Google Scholar
  31. Lavrenko EM et al. (1988) Botanico-geographica l and cartographical research in the Mongolian People’s Republic. In Prirodnye usloviia, rastitel'nyi pokrov i zhivotnyi mir Mongolii. Pushchino, pp 137–159 [in Russian]Google Scholar
  32. Lavrenko EM, Karamysheva ZV, Nikulina RI (1991) Eurasian steppes. Leningrad [in Russian]Google Scholar
  33. Liu H, Cui H, Pott R, Speier M (2000) Vegetation on the woodland-steppe transition at the southeastern edge of the Inner Mongolian Plateau. J Veg Sci 11:525–532CrossRefGoogle Scholar
  34. Makunina NI, Maltseva TV (2008) Vegetation of forest-steppe and subtaiga Altay-Sayan mountain system foothills. Sibirsk Bot Vestn, Elektronniy Zhurn 3:45–156 [in Russian]Google Scholar
  35. Makunina NI, Korolyuk AYu, Maltseva TV (2010) Vegetation of Biysk-Chumysh mount. Rastitel’n Rossii 16:40–55 [in Russian]Google Scholar
  36. Maximov AA (1989) Natural cycles (the reasons of the natural processes periodicity). Leningrad [in Russian]Google Scholar
  37. Merunková K, Preislerová Z, Chytrý M (2012) White Carpathian grasslands: Can local ecological factors explain their extraordinary species richness? Preslia 84:311–325Google Scholar
  38. Michalcová D, Chytrý M, Pechanec V, Hájek O, Jongepier JW, Danihelka J, Grulich V, Šumberova K, Preislerova Z, Ghisla A, Bacaro G, Zelený D (2014) High plant diversity of grasslands in a landscape context: a comparison of contrasting regions in Central Europe. Folia Geobot 49:117–135CrossRefGoogle Scholar
  39. Mordkovich VG (1991) Invertebrate animals and the diagnostics of elementary soil processes. Pochvověděnie 10:92–99Google Scholar
  40. Namzalov BB (1994) Steppes of Southern Siberia. Novosibirsk-Ulan-Ude [in Russian]Google Scholar
  41. Pärtel M, Bruun HH, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. In Lillak R, Viiralt R, Linke A, Geherman V (eds) Integrating efficient grassland farming and biodiversity Estonian Grassland Society, Tartu, pp 1–14Google Scholar
  42. Qian H, Klinka K, Kayahara GJ (1998) Longitudinal patterns of plant diversity in the North American boreal forest. Pl Ecol 138:161–178CrossRefGoogle Scholar
  43. Reshchikov MA (1961) West Transbaikalian steppes. Moscow [in Russian]Google Scholar
  44. Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34Google Scholar
  45. Shmida A, Ellner S (1984) Coexistence of plant species with similar niches. Vegetatio 58:29–55Google Scholar
  46. Smagin VN, Il'inskaya SA, Nazimova DI, Cherednikova S et al. (1980) Forest types in the mountains of southern Siberia. Novosibirsk [in Russian]Google Scholar
  47. Sørensen, T (1948) A new method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biol Skr 5:1–34Google Scholar
  48. Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 58:239–250CrossRefGoogle Scholar
  49. Vandakurova EV (1950) Vegetation of Kulunda steppe. Novosibirsk [in Russian]Google Scholar
  50. Voskresenskiy SS (1962) Siberian geomorphology, M. [in Russian]Google Scholar
  51. Wang X, Fang J, Sanders NJ, White PS, Tang Z (2009) Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32:133–142CrossRefGoogle Scholar
  52. Zemtsov AA, Miserov BV, Nikolaev VA, Suchodrovskiy VL, Beletskaya NP, Gritsenko AG, Pilkevich IV, Sinelnikov VA (1988) The relief of the West Siberian Plain. Novosibirsk [in Russian]Google Scholar
  53. Zobel M (1992) Plant species coexistence: the role of historical, evolutionary and ecological factors. Oikos 65:314–320CrossRefGoogle Scholar
  54. Zobel M, van der Maarel E, Dupre C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66CrossRefGoogle Scholar
  55. Zverev AA (2007) Information technologies in vegetation cover investigations. Tomsk [in Russian]Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  1. 1.Central Siberian Botanical Garden SB RASNovosibirskRussia
  2. 2.Institute of General and Experimental Biology SB RASUlan-UdeRussia
  3. 3.College of Urban and Environmental SciencesPeking UniversityBeijingChina

Personalised recommendations