Advertisement

Folia Geobotanica

, Volume 52, Issue 3–4, pp 367–385 | Cite as

Underground organs of Brazilian Asteraceae: testing the CLO-PLA database traits

  • Arinawa Liz FilartigaEmail author
  • Jitka Klimešová
  • Beatriz Appezzato-da-Glória
Article

Abstract

Not all plant traits from all regions have been standardized or databased. Some ecosystems, such as tropical grasslands, are under-represented in such databases owing to the difficulty in assessing bud banks and evaluating clonal growth. This study aimed to (i) determine whether Brazilian morphological traits of belowground organs can be translated into categories used in the CLO-PLA database and (ii) assess the applicability of clonal and bud bank traits standardized in the CLO-PLA database for Brazilian Aldama species, which have specialized belowground organs and are able to resprout. In all, 165 species, including herbs, subshrubs and shrubs, of 37 genera from different Brazilian ecosystems, were evaluated. Not all the traditional Brazilian morphological categories could be translated into CLO-PLA traits, resulting in a lower number of categories and loss of information regarding plant morphology. Furthermore, clonal and bud bank traits could be only partially evaluated for Aldama, since some traits showed seasonal variation. The CLO-PLA classification focused on the organs in relation to the soil surface, the connection between mother and daughter shoots, and the origin of buds from which daughter shoots sprout. In the Brazilian classification, by contrast, anatomical features or early ontogeny of the organ are very important. Nevertheless, our results might form the basis for future comparative studies across ecosystems and biomes, for which common trait standardization is necessary. However, further research is needed to assess the functional morphology of clonal and bud bank traits in tropical regions.

Keywords

Aldama Brazilian grasslands bud bank Campos Cerrado 

Notes

Acknowledgements

We thank the National Council for Scientific and Technological Development (CNPq) for awarding grant Proc. No. 303715/2014-6 and the São Paulo Research Foundation (FAPESP) for providing financial support and grants to the first author (Thematic Project Proc. No. 2010/51454-3 and Proc. No. 2014/09401-0).

References

  1. Almeida GSS (2008) Asteraceae Dumort. nos campos rupestres do Parque Estadual do Itacolomi, Minas Gerais, Brasil. Academic Press, Minas Gerais, BrazilGoogle Scholar
  2. Almeida AM, Fonseca CR, Prado PI, Almeida-Neto M, Diniz S, Kubota U et al. (eds) (2005) Diversidade e ocorrência de Asteraceae em cerrados de São Paulo. Biota Neotrop (Campinas) 5:1–17Google Scholar
  3. Appezzato-da-Glória B (2015) Morfologia de sistemas subterrâneos de plantas—Morphology of plant underground systems. Minas Gerais, 3i PressGoogle Scholar
  4. Appezzato-da-Glória B, Cury G (2011) Morpho-anatomical features of underground systems in six Asteraceae species from the Brazilian Cerrado. Anais Acad Brasil Ci 83:981–991CrossRefGoogle Scholar
  5. Appezzato-da-Glória B, Cury G, Soares MKM, Rocha R, Hayashi AH (2008) Underground systems of Asteraceae species from the Brazilian Cerrado. J Torrey Bot Soc 135:103–113CrossRefGoogle Scholar
  6. Aubréville A (1963) Classification des forms biologiques des plantes vasculaires in milieu tropicale. Adansonia 3:221–226Google Scholar
  7. Azevêdo-Gonçalves CF, Matzenbacker NI (2007) O gênero Hypochaeris L. (Asteraceae) no Rio Grande do Sul, Brasil. Iheringia 62:55–87Google Scholar
  8. Benson EJ, Hartnett DC, Mann KH (2004) Belowground bud banks and meristem limitation in tallgrass prairie plant populations. Amer J Bot 91:416–421CrossRefGoogle Scholar
  9. Beretta ME, Fernandes AC, Schneider AA, Ritter MR (2008) A família Asteraceae no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Rev Bras Biol 6:189–216Google Scholar
  10. Bombo AB, Oliveira TS, Oliveira ASS, Rehder VLG, Appezzato-da-Gloria A (2014) Anatomy and essential oil composition of the underground systems of three species of Aldama La Llave (Asteraceae). J Torrey Bot Soc 14:115–125CrossRefGoogle Scholar
  11. Bringel Jr JB (2007) A tribo Heliantheae Cassini (Asteraceae) na bacia do rio Paranã (GO, TO). Academic Press, BrasíliaGoogle Scholar
  12. Cabrera AL, Klein RM (1973) Compostas, Tribo Mutiseae. In Reitz R (ed) Flora ilustrada Catarinense. Herbário Barbosa Rodrigues, Itajaí, pp 1–124Google Scholar
  13. Cabrera AL, Klein RM (1989) Compostas (4. Tribo Eupatorieal). Flora ilustrada Catarinense. pp 649–750Google Scholar
  14. Carter DL, Vanderwide BL, Blair JM (2012) Drought-mediated stem and belowground bud dynamics in restored grasslands. Appl Veg Sci 15:470–478CrossRefGoogle Scholar
  15. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE et al. (eds) (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Austral J Bot 51:335–380Google Scholar
  16. Dalgleish HJ, Hartnett DC (2006) Belowground bud banks increase along a precipitation gradient of the North American Great Plains: a test of the meristem limitation hypothesis. New Phytol 171:81–89CrossRefPubMedGoogle Scholar
  17. Damascos MA, Prado CHBA, Ronquim CC (2005) Bud composition, branching patterns and leaf phenology in Cerrado woody species. Ann Bot (Oxford) 96:1075–1084CrossRefGoogle Scholar
  18. Fernandes AC (2009) Asteraceae Martynov do Morro Santana, Porto Alegre, Rio Grande do Sul. Academic Press, Rio Grande do SulGoogle Scholar
  19. Fidelis A (2008) Fire in subtropical grasslands in Southern Brazil: effects on plant strategies and vegetation dynamics. Academic Press, MünchenGoogle Scholar
  20. Fidelis A, Appezzato-da-Glória B, Pfadenhauer J (2009) A importância da biomassa e das estruturas subterrâneas nos Campos Sulinos. In Pillar VP, Müller SC, Castilhos ZMS, Jacques AVA (eds) Campos Sulinos: conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente, Brasil, pp 85–97Google Scholar
  21. Fidelis A, Appezzato-da-Glória B, Pillar VD, Pfadenhauer J (2014) Does disturbance affect dub bank size and belowground structures diversity in Brazilian subtropical grasslands? Flora 209:110–116CrossRefGoogle Scholar
  22. Hayashi AH (2003) Morfo-anatomia de sistemas subterrâneos de espécies herbáceo-subarbustivas e arbóreas, enfatizando a origem das gemas caulinares. Academic Press, São PauloGoogle Scholar
  23. Hayashi AH, Appezzato-da-Glória B (2005) The origin and anatomy of rhizophores in Vernonia herbacea and V. platensis (Asteraceae) from the Brazilian Cerrado. Austral J Bot 53:273–279CrossRefGoogle Scholar
  24. Hayashi AH, Appezzato-da-Glória B (2007) Anatomy of the underground system in Vernonia grandiflora Less. and V. brevifolia Less. (Asteraceae). Braz Arch Biol Technol 50:979–988CrossRefGoogle Scholar
  25. Hendrickson JR, Briske DD (1997) Axillary bud bank of two semiarid perennial grasses: occurrence, longevity and contribution to population persistence. Oecologia 110:584–591CrossRefPubMedGoogle Scholar
  26. Hind DJN (2002) A new species of Porophyllum (Compositae:Heliantheae) from Bahia, Brazil. Kew Bull 57:705–709CrossRefGoogle Scholar
  27. Hoffmann WA (1999) Fire and population dynamics of woody plants in a Neotropical savanna: matrix model projections. Ecology 80:1354–1369CrossRefGoogle Scholar
  28. Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A et al. (2014) The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol & Evol 4:4701–4735CrossRefGoogle Scholar
  29. Katinas L (2012) Revisión del género Perezia (Compositae). Bol Soc Argent Bot 47:159–261Google Scholar
  30. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G et al. (eds) (2011) TRY: a global database of plant traits. Glob Chang Biol 17:2905–2935Google Scholar
  31. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M et al. (eds) (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274Google Scholar
  32. Klimeš L, Klimešová J (2005) Clonal traits. In Knevel IC, Bekker RM, Kunzmann D, Stadler M, Thompson K (eds) The LEDA traitbase collecting and measuring standards of life-history traits of the Northwest European Flora. University of Groningen, Netherlands, pp 66–88Google Scholar
  33. Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516CrossRefGoogle Scholar
  34. Klimešová J, Klimeš L (2006) CLO-PLA3–the database of clonal and bud bank traits of Central European flora. Available at http://clopla.butbn.cas.cz
  35. Klimešová J, Klimeš L (2008) Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80:255–275Google Scholar
  36. Klimešová J, Doležal J, Dvorský M, de Bello F, Klimeš L (2011) Clonal growth forms in Eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot 46:191–217CrossRefGoogle Scholar
  37. Klimešová J, Doležal J, Prach K, Košnar J (2012) Clonal growth forms in Arctic plants and their habitat preferences: a study from Petuniabukta, Spitsbergen. Polish Polar Res 33:421–442Google Scholar
  38. Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megamot 1:147–155Google Scholar
  39. Lima LFP, Matzenbacher NI (2008) O gênero Pterocaulon Ell. (Asteraceae-Plucheeae) no estado do Rio Grande do Sul, Brasil. Iheringia 63:213–229Google Scholar
  40. Lindman CAM (1906) A vegetação do Rio Grande do Sul (Brasil Austral). Porto Alegre: Livraria UniversalGoogle Scholar
  41. Loeuille B, Robinson H, Semir J (2011) Minasia ramosa (Asteraceae:Vernonieae), a new species from the Serra do Cabral, Minas Gerais, Brazil. Phytotaxa 25:18–22Google Scholar
  42. Luoga EJ, Witkowski ETF, Balkwillk K (2004) Regeneration by coppicing (resprouting) of miombo (African savanna) tree in relation to land use. Forest Ecol Managem 189:23–35CrossRefGoogle Scholar
  43. Magenta MAG (2006) Viguiera Kunth (Asteraceae-Heliantheae) na América do Sul e sistemática das espécies do Brasil. Academic Press, São PauloCrossRefGoogle Scholar
  44. Magenta MAG, Pirani JR (2014) Novidades taxonômicas em Aldama (Asteraceae-Heliantheae). Rodriguésia 65:175–192CrossRefGoogle Scholar
  45. Magenta MAG, Pirani JR, Mondin CA (2010) Novos táxons e combinações de Viguiera Kunth (Asteraceae-Heliantheae) no Brasil. Rodriguesia 61:01–11CrossRefGoogle Scholar
  46. Marcati CR, Oliveira JS, Machado SR (2006) Growth rings in Cerrado woody species: occurrence and anatomical markers. Biota Neotrop (Campinas) 6:3–31Google Scholar
  47. Maurin O, Davies TJ, Burrows JE, Daru BH, Yessoufou K, Musya AM et al. (eds) (2014) Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol 204:201–214Google Scholar
  48. Menezes NL, Müller C, Sajo MG (1979) Um novo e peculiar tipo de sistema subterrâneo em espécies de Vernonia da Serra do Cipó (Minas Gerais, Brasil). Bol Bot Univ São Paulo 7:33–38Google Scholar
  49. Mercandeli AA, Bessa GP, Ronchi SN, Segato TPS, da Silva AG (2012) Evidence for the safe use of the extract from Brazilian arnica, Solidago chilensis Meyen, in primary health care. Chin Med J 3:4–8CrossRefGoogle Scholar
  50. Midgley JJ (1996) Why the world’s vegetation is not totally dominated by resprouting plants; because resprouters are shorter than reseeders. Ecography 19:92–95CrossRefGoogle Scholar
  51. Mondin CA (2007) Novos registros de Heliantheae Cass. (Asteraceae) para o Brasil. Acta Bot Bras 21:993–1001CrossRefGoogle Scholar
  52. Monteiro Jr MB (2013) Partição de recursos hídricos em comunidades vegetais de camp rupestre e campo de altitude no sudeste brasileiro. Academic Press, São PauloGoogle Scholar
  53. Moraes MD, Semir J (2009) A revision of Brazilian Dimerostemma (Asteraceae, Heliantheae, Ecliptinae), with a new species and taxonomic adjustments. Brittonia 61:341–365CrossRefGoogle Scholar
  54. Neke KS, Owen-Smith N, Witkowski ETF (2006) Comparative resprouting response of Savanna woody plant species following harvesting: the value of persistence. Forest Ecol Managem 232:114–123CrossRefGoogle Scholar
  55. Oliveira TS, Bombo AB, Appezzato-da-Glória B (2013) Anatomy of vegetative organs with an emphasis on the secretory structure of two species of Aldama (Asteraceae Heliantheae). Botany 91:335–342CrossRefGoogle Scholar
  56. Overbeck GE, Pfadenhauer J (2007) Adaptative strategies in burned subtropical grassland in southern Brazil. Flora 202:27–49CrossRefGoogle Scholar
  57. Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2005) Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J Veg Sci 16:655–664CrossRefGoogle Scholar
  58. Overbeck GE, Müller SC, Pillar VD, Pfadenhauer J (2006) Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil. Braz J Biol 66:1073–1090CrossRefPubMedGoogle Scholar
  59. Pasini E, Ritter MR (2012) O gênero Trichocline Cass. (Asteraceae, Mutisieae) no Rio Grande do Sul, Brasil. Rev Bras Biol 10:490–506Google Scholar
  60. Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331CrossRefPubMedGoogle Scholar
  61. Paula S, Arianoutsou M, Kazanis D, Tavsanoglu C, Lloret F, Buhk C et al. (eds) (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420–1441Google Scholar
  62. Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) The GCTE (Global Change of Terrestrial Ecosystems) fire network Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100CrossRefGoogle Scholar
  63. Pérez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P et al. (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234CrossRefGoogle Scholar
  64. Rachid M (1947) Transpiração e sistemas subterrâneos da vegetação de verão dos campos cerrados de Emas. Bol Fac Filos Univ São Paulo, Bot 80:1–140Google Scholar
  65. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot (Oxford) 80:223–230CrossRefGoogle Scholar
  66. Reck M, Benício LM, Ruas EA, Rodrigues LA, Ruas PM, Ortiz MA et al. (eds) (2011) Karyotype and AFLP data reveal the phylogenetic position of the Brazilian endemic Hypochaeris catharinensis (Asteraceae). Pl Syst Evol 296:231–243Google Scholar
  67. Ritter MR, Miotto STS (2005) Taxonomia de Mikania Wild. (Asteraceae) no Rio Grande do Sul, Brasil. Hoehnea 32:309–359Google Scholar
  68. Rizzini CT (1965) Estudos experimentais sobre o xilopódio e outros órgãos tuberosos do Cerrado. Anais Acad Brasil Ci 37:87–113Google Scholar
  69. Rizzini CT, Heringer EP (1961) Underground organs of plants from some southern Brazilian savannas, with special reference to the xylopodium. Phyton 17:105–124Google Scholar
  70. Rogers WE, Hartnett DC (2001) Temporal vegetation dynamics and recolonization mechanisms on different-sized soil disturbances in tallgrass prairie. Amer J Bot 88:1634–1642CrossRefGoogle Scholar
  71. Roque N (2001) Five new species of Richterago (Compositae, Mutisieae): a genus endemic to Brazil. Novon 11:341–349CrossRefGoogle Scholar
  72. Schneider AA (2009) Estudo taxonômico de Baccharis L. sect. Caulopterae DC. (Asteraceae: Astereae) no Brasil. Academic Press, Rio Grande do SulGoogle Scholar
  73. Silva EMS, Hayashi AH, Appezzato-da-Glória B (2014) Anatomy of vegetative organs in Aldama tenuifolia and A. kuthiana (Asteraceae: Heliantheae). Brazil J Bot 34:505–517CrossRefGoogle Scholar
  74. Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savanas of the Brazilian Cerrado. Int J Pl Sci 173:711–723CrossRefGoogle Scholar
  75. Souza VC, Lorenzi H (2008) Botânica sistemática-guia ilustrado para identificação das famílias de fanerógamas nativas e exóticas no Brasil, baseado em APG II. Instituto Plantarum, São PauloGoogle Scholar
  76. Teles AM (2008) Contribuição ao estudo taxonômico da tribo Astereae no Brasil e Senecioneae (Asteraceae) no estado de Minas Gerais. Academic Press, Minas GeraisGoogle Scholar
  77. Tertuliano MF, Figueiredo-Ribeiro RCL (1993) Distribution of fructose polymers in herbaceous species of Asteraceae from Cerrado. New Phytol 123:741–749CrossRefGoogle Scholar
  78. Troll C (1956) Der klima–und vegetationsaufbau der Erd im Lichte neuer Forschungen. Jahrb Akad Wiss Lit, Mainz 216–229Google Scholar
  79. Vanderweide BL (2013) Grazing and drought in tallgrass prairie: the role of belowground bud banks in vegetation dynamics. Academic Press, KansasGoogle Scholar
  80. Vilhalva DAA (2004) Morfo-anatomia de sistemas subterrâneos de três espécies de Asteraceae do Cerrado do estado de São Paulo. Academic Press, São PauloGoogle Scholar
  81. Vilhalva DAA, Appezzato-da-Glória B (2006) Morfo-anatomia do sistema subterrâneo de Calea verticillata (Klatt) Pruski e Isostigma megapotamicum (Spreng.) Sherff–Asteraceae. Rev Bras Bot 29:39–47CrossRefGoogle Scholar
  82. Vilhalva DAA, Appezzato-da-Glória B (2006b) Morfoanatomia da raiz tuberosa de Vernonia oxylepis Sch. Bip in Mart. ex Baker Asteraceae. Acta Bot Bras 20:591–598Google Scholar
  83. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I et al. (eds) (2007) Let the concept of trait be functional! Oikos 116:882–892Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2017

Authors and Affiliations

  • Arinawa Liz Filartiga
    • 1
    Email author
  • Jitka Klimešová
    • 2
  • Beatriz Appezzato-da-Glória
    • 1
  1. 1.Biological Sciences Department, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic

Personalised recommendations