Folia Geobotanica

, Volume 51, Issue 2, pp 175–186 | Cite as

Estimating paternal efficiency in an agamic polyploid complex: pollen stainability and variation in pollen size related to reproduction mode, ploidy level and hybridogenous origin in Pilosella (Asteraceae)

Article

Abstract

Pollen quality was evaluated in Pilosella plants sourced from the field and representing various cytotypes (diploid to octoploid), reproduction modes (sexuality, facultative apomixis and seed sterility or semisterility) and status of origin (basic species, hybridogenous intermediate species and recent hybrids). Two methods of non-vital pollen staining were compared, providing a similar pattern of variation in pollen stainability and pollen size. A complex influence of ploidy level, reproduction mode and plant origin on pollen quality was found. Sexual biotypes had high and equable pollen stainability whereas apomictic and (semi)sterile plants were more variable in this trait. Nevertheless, the sexual, apomictic and (semi)sterile plants did not significantly differ in pollen stainability, while the impacts of both ploidy level and plant origin were significant. Apomictic triploids had low pollen stainability and heterogeneously sized pollen, most likely resulting from disturbed meiosis. The other biotypes, including higher odd-ploid cytotypes, displayed various patterns of pollen quality partially depending on the hybridogenous origin. Whereas high pollen quality was detected in most of the apomictic hexaploids and heptaploids, including recent hybrids, serious pollen dysfunction was found in most octoploids. Seed (semi)sterility was not strongly associated with reduced pollen quality. Either blocked or unstable pollen production was occasionally recorded, predominantly among recent hybrids. Despite autonomous apomixis independent of pollen, most apomictic biotypes displayed fairly high pollen stainability and pollen size homogeneity, implying sufficient production of viable reduced pollen. Most representatives of this agamic polyploid complex, including facultative apomicts, might efficiently mate as both male and female parents in natural populations.

Keywords

autonomous apomixis effect of pollen parent hybridization pollen quality polyploidy reproduction mode 

Supplementary material

12224_2016_9240_MOESM1_ESM.pdf (100 kb)
ESM 1(PDF 99.8 kb)
12224_2016_9240_MOESM2_ESM.pdf (124 kb)
ESM 2(PDF 124 kb)
12224_2016_9240_MOESM3_ESM.pdf (120 kb)
ESM 3(PDF 119 kb)

References

  1. Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117−122CrossRefPubMedGoogle Scholar
  2. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca RatonGoogle Scholar
  3. Bicknell RA, Koltunow AM (2004) Understanding apomixis: Recent advances and remaining conundrums. Pl Cell 16:S228−S245CrossRefGoogle Scholar
  4. Bicknell RA, Lambie SC, Butler RC (2003) Ouantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138:11−20CrossRefPubMedGoogle Scholar
  5. Bureš P, Šmarda P, Rotreklová O, Oberreiter M, Burešová M, Konečný J, Knoll A, Fajmon K, Šmerda J (2010) Pollen viability and natural hybridization of Central European species of Cirsium. Preslia 82:391–422Google Scholar
  6. Campbell CS, Greene CW, Dickinson TA (1991) Reproductive biology in the Maloideae (Rosaceae). Syst Bot 16:333−349CrossRefGoogle Scholar
  7. Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650−18655CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapman H, Bicknell R (2000) Recovery of a sexual and an apomictic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. New Zealand J Ecol 24:81−85Google Scholar
  9. Christoff M (1942) Die genetische Grundlage der apomiktischen Fortpflanzung bei Hieracium aurantiacum L. Z Indukt Abstamm Vererbungslehre 80:103−125Google Scholar
  10. Chrtek J jr (1997) Taxonomy of the Hieracium alpinum group in the Sudeten Mts., the West and the Ukrainian East Carpathian. Folia Geobot Phytotax 32:69–97Google Scholar
  11. den Nijs JCM, Sterk AA (1980) Cytogeographical studies of Taraxacum sect. Taraxacum (= sect. Vulgaria) in Central Europe. Bot Jahrb Syst 101:527−554Google Scholar
  12. Dobeš CH, Milosevic A, Prohaska D, Scheffknecht S, Sharbel TF, Hülber K (2013) Reproductive differentiaton into sexual and apomictic polyploid cytotypes in Potentilla puberula (Potentilleae, Roasaceae). Ann Bot (Oxford) 112:1159–1168CrossRefGoogle Scholar
  13. Fehrer J, Gemeinholzer B, Chrtek J Jr, Bräutigam S (2007a) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylegenet Evol 42:347–361CrossRefGoogle Scholar
  14. Fehrer J, Krahulcová A, Krahulec F, Chrtek J Jr, Rosenbaumová R, Bräutigam S (2007b) Evolutionary aspects in Hieracium subgenus Pilosella. In Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Koeltz, Königstein, pp 359−390Google Scholar
  15. Gadella TWJ (1988) Some notes on the origin of polyploidy in Hieracium pilosella aggr. Acta Bot Neerl 37:515−522CrossRefGoogle Scholar
  16. Hand ML, Vít P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek J Jr, Fehrer J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity 114:17−26CrossRefPubMedGoogle Scholar
  17. Koltunow AM, Johnson SD, Okada T (2011a) Apomixis in hawkweed: Mendel's experimental nemesis. J Exp Bot 62:1699−1707CrossRefPubMedGoogle Scholar
  18. Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, Tschuiya T, Wilson S, Fletcher P, Ito K, Suzuki G, Mukai Y, Fehrer J, Bicknell RA (2011b) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Pl J 66: 890−902CrossRefGoogle Scholar
  19. Krahulcová A, Krahulec F (1999) Chromosome numbers and reproductive systems in selected representatives of Hieracium subgen. Pilosella in the Krkonoše Mts (the Sudeten Mts). Preslia 71:217−234Google Scholar
  20. Krahulcová A, Krahulec F (2000) Offspring diversity in Hieracium subgen. Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination. Fragm Florist Geobot 45:239−255Google Scholar
  21. Krahulcová A, Krahulec F, Rosenbaumová R (2011) Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae). Sexual Pl Reprod 24:63−74Google Scholar
  22. Krahulcová A, Papoušková S, Krahulec F (2004) Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella). Hereditas 141:19−30CrossRefPubMedGoogle Scholar
  23. Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009a) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44:281−306CrossRefGoogle Scholar
  24. Krahulcová A, Rotreklová O, Krahulec F (2014) The detection, rate and manifestation of residual sexuality in apomictic populations of Pilosella (Asteraceae, Lactuceae). Folia Geobot 49:239−258CrossRefGoogle Scholar
  25. Krahulcová A, Vladimirov V, Krahulec F, Bräutigam S (2009b) The agamic complex of Pilosella (Asteraceae) in Bulgaria and SW Romania: variation in ploidy level and breeding systems. Phytol Balcanica 15:377−384Google Scholar
  26. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J jun (2004) The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a synthetic view. Preslia 76:223−243Google Scholar
  27. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Schuhwerk F (2008) The structure of the agamic complex of Hieracium subgen. Pilosella in the Šumava Mts and its comparison with other regions in Central Europe. Preslia 80:1−26Google Scholar
  28. Krahulec F, Krahulcová A, Rosenbaumová R (2011) Production of polyhaploids by facultatively apomictic Pilosella can result in the formation of new genotypes via genome doubling. Preslia 83:471−490Google Scholar
  29. Krahulec F, Krahulcová A, Hlaváček R (2014) Rare hybrid swarm of Pilosella polymastix × P. officinarum: cytotype structure and modes of reproduction. Preslia 86:179−192Google Scholar
  30. Kumar P, Rana PK, Humshikha, Singhal VJ, Gupta RC (2014) Cytogeography and phenomenon of cytomixis in Silene vulgaris from cold regions of Northwest Himalayas (India). Pl Syst Evol 300:831−842CrossRefGoogle Scholar
  31. Mártonfiová L (2006) Possible pathways of the gene flow in Taraxacum sect. Ruderalia. Folia Geobot 41:183–201CrossRefGoogle Scholar
  32. Mártonfiová L, Mártonfi P, Šuvada R (2010) Breeding behavior and its possible consequences for gene flow in Taraxacum sect. Erythrosperma (H. Lindb.) Dahlst. Pl Species Biol 25:93−102CrossRefGoogle Scholar
  33. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl J 21: 97−108CrossRefGoogle Scholar
  34. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  35. Moogie M (1992) The evolution of asexual reproduction in plants. Chapman & Hall, LondonGoogle Scholar
  36. Mráz P, Chrtek J, Šingliarová B (2009) Geographical parthenogensis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum. Bot Helv 119:41–51CrossRefGoogle Scholar
  37. Nogler GA (1984) Gametophytic apomixis. In Johri BM (ed) Embryology of angiosperms. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp 475−518CrossRefGoogle Scholar
  38. Noyes RD, Wagner JD (2014) Dihaploidy yields diploid apomicts and parthenogens in Erigeron (Asteraceae). Amer J Bot 101:865−874CrossRefGoogle Scholar
  39. Peterson R, Slovin JP, Chen Ch (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Pl Biol 1:e13:66−69Google Scholar
  40. Podio M, Siena LA, Hojsgaard D, Stein J, Quarin CL, Ortiz JPA (2012) Evaluation of meiotic abnormalities and pollen viability in aposporous and sexual tetraploid Paspalum notatum (Poaceae). Pl Syst Evol 298:1625–1633CrossRefGoogle Scholar
  41. Pogan E, Wcisło H (1995) Embryological analysis of Hieracium pilosella L. from Poland. Acta Biol Cracov, Ser Bot 37:53−61Google Scholar
  42. Rich TCG (2009) Pollen stainability in British Sorbus L. (Rosaceae). Pl Ecol Divers 2:85−88CrossRefGoogle Scholar
  43. Riseman A, Sumanasinghe VA, Craig R (2006) Cytology, crossability, and pollen fertility of Sri Lankan Exacum (Gentianaceae) and their hybrids. Int J Pl Sci 167:191–199CrossRefGoogle Scholar
  44. Rivero-Guerra AO (2008) Cytogenetics, geographical distribution, and pollen fertility of diploid and tetraploid cytotypes of Santolina pectinata Lag. (Asteraceae: Anthemideae). Bot J Linn Soc 156:657−667CrossRefGoogle Scholar
  45. Rosenbaumová R, Krahulcová A, Krahulec F (2012) The intriguing complexity of parthenogenesis inheritance in Pilosella rubra (Asteraceae, Lactuceae). Sexual Pl Reprod 25:185−196CrossRefGoogle Scholar
  46. Rosenbaumová R, Krahulec F (2015) Sexual reproduction as a source of ploidy nevel variation in the model agamic complex of Pilosella bauhini and P. officinarum (Asteraceae: Lactuceae). Pl Syst Evol 301:279−290CrossRefGoogle Scholar
  47. Rotreklová O (2008) Hieracium subgen. Pilosella: pollen stainability in sexual, apomictic and sterile plants. Biologia (Bratislava) 63:61−66CrossRefGoogle Scholar
  48. Slade K, Rich TCG (2007) Pollen studies in British Hieracium sect. Alpina (Asteraceae). Watsonia 26:443−450Google Scholar
  49. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323−1335CrossRefGoogle Scholar
  50. Tas ICQ, van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707−714CrossRefPubMedGoogle Scholar
  51. van Dijk PJ (2007) Potential and realized cost of sex in dandelions, Taraxacum officinale s.l. In Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Koeltz, Königstein, pp 215−233Google Scholar
  52. van Dijk PJ (2009) Apomixis: basis for non-botanists. In Schön I, Martens K, van Dijk PJ (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht, Heidelberg, London, New York, pp 47−62Google Scholar
  53. Vijverberg K, van Dijk PJ (2007) Genetic linkage mapping of apomictic loci. In Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Koeltz, Königstein, pp 137−158Google Scholar
  54. Voigt M.-L, Melzer M, Rutten T, Mitchell-Olds T, Sharbel TF (2007) Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. In Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Koeltz, Königstein, pp 235−257Google Scholar
  55. Whitton J, Sears ChJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Pl Sci 169:169−182Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2016

Authors and Affiliations

  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of TaxonomyInstitute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic

Personalised recommendations