Folia Geobotanica

, Volume 50, Issue 4, pp 349–357 | Cite as

On the need for phylogenetic ‘corrections’ in functional trait-based approaches

  • Francesco de Bello
  • Matty P. Berg
  • André T. C. Dias
  • Jose Alexandre F. Diniz-Filho
  • Lars Götzenberger
  • Joaquín Hortal
  • Richard J. Ladle
  • Jan Lepš
Article

Abstract

There is considerable uncertainty about if, and when, phylogenetic information is needed to answer various ecological questions about trait-based ecological studies. It has been recommended that both functional and phylogenetic information should be combined, and some researchers have even suggested that functional information for species should be ‘corrected’ because species are not phylogenetically independent. Here, we address these issues by identifying key types of questions in functional trait-based ecology and discussing the utility of phylogenetic information for answering them, either as a correction or in combination with functional traits. Phylogenetic analyses are identified as essential to answer questions related to the evolution of adaptations to abiotic and biotic conditions. However, we argue that phylogenetic information is not always relevant for functional trait studies, and should not be incorporated into ecological analyses without clear justification. Phylogenetic relatedness between species should not be considered a bias to be corrected, but rather an evolutionary signal that allows results to be interpreted at different evolutionary scales. Furthermore, if traits are conserved, phylogeny can be used as a proxy for missing information on traits and functional trait diversity. We conclude by providing guidelines on when to apply, and how to interpret, results obtained using phylogenetic information for a variety of ecological questions linked to functional traits.

Keywords

adaptation functional and phylogenetic diversity phylogenetically independent contrast response and effect traits limiting similarity ecosystem services 

References

  1. Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449–457CrossRefGoogle Scholar
  2. Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15: 899–910CrossRefGoogle Scholar
  3. Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93: S223–S233CrossRefGoogle Scholar
  4. Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Lett 16: 1234–1244PubMedCrossRefGoogle Scholar
  5. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12: 693–715PubMedCrossRefGoogle Scholar
  6. de Bello F, Lepš J, Sebastia MT (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42: 824–833CrossRefGoogle Scholar
  7. de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, da Silva PM, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers & Conserv 19: 2873–2893CrossRefGoogle Scholar
  8. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano PPearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol & Evol 3: 2958–2975CrossRefGoogle Scholar
  9. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12: 53–64CrossRefGoogle Scholar
  10. Diniz-Filho JAF, Rodríguez MA, Bini, LM, Olalla-Tárraga MA, Cardillo M, Nabout JC, Hortal J, Hawkins BA (2009) Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. J Biogeogr 36: 2222–2236CrossRefGoogle Scholar
  11. Diniz-Filho JAF, Bini LM, Rangel TF, Morales-Castilla I, Olalla-Tarraga MA, Rodriguez MA, Hawkins BA (2012) On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 35: 239–249CrossRefGoogle Scholar
  12. Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29: 600–614CrossRefGoogle Scholar
  13. Götzenberger L, de Bello F, Brathen KA, Davison J, Dubuis A, Guisan A, Leps J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012) Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol Rev (Cambridge) 87: 111–127CrossRefGoogle Scholar
  14. Hoffmann WA, Franco AC (2009) The importance of evolutionary history in studies of plant physiological ecology: examples from cerrados and forests of central Brazil. Brazil J Pl Physiol 20:247–256Google Scholar
  15. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol Monogr 75: 3–35CrossRefGoogle Scholar
  16. Kleyer M, Dray S, de Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23: 805–821CrossRefGoogle Scholar
  17. Klimeš L (2008) Clonar splitters and integrators in harsh environments of the Trans-Himalaya. Evol Ecol 22: 351–367CrossRefGoogle Scholar
  18. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16: 545–556CrossRefGoogle Scholar
  19. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21: 178–185PubMedCrossRefGoogle Scholar
  20. Münkemueller T, Boucher F, Thuiller W, Lavergne S (2015) Phylogenetic niche conservatism – common pitfalls and ways forward. Meth Ecol Evol 29: 627–639CrossRefGoogle Scholar
  21. Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev (Cambridge) 86: 792–812CrossRefGoogle Scholar
  22. Pavoine S, Vela E, Gachet S, de Belair, G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99: 165–175CrossRefGoogle Scholar
  23. Pavoine S, Gasc A, Bonsall MB, Mason NWH (2013) Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes? J Veg Sci 24: 781–793CrossRefGoogle Scholar
  24. Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, Young, BE, Graham CH, Costa GC (2014). Inputation of missing data in life-history trait datasets: which approach performs the best? Meth Ecol Evol 5: 961–970CrossRefGoogle Scholar
  25. Pillar VD, Duarte LDS (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol Letters 13: 587–596CrossRefGoogle Scholar
  26. Price T (1997) Correlated evolution and independent contrasts. Philos Trans, Ser B 352: 519–529CrossRefGoogle Scholar
  27. Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminee JHJ, van Groenendael JM (2008) Less lineages – more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11: 809–819PubMedCrossRefGoogle Scholar
  28. Silvertown J, Dodd M, Gowing D, Lawson C, McConway K (2006) Phylogeny and the hierarchical organization of plant diversity. Ecology 87: S39–S49PubMedCrossRefGoogle Scholar
  29. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Letters 10: 1115–1123CrossRefGoogle Scholar
  30. Swenson NG (2009) Phylogenetic Resolution and Quantifying the Phylogenetic Diversity and Dispersion of Communities. PloS ONE 4Google Scholar
  31. Swenson NG (2011) Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities. PloS ONE 6Google Scholar
  32. Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90: 2161–2170PubMedCrossRefGoogle Scholar
  33. van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16: 547–554CrossRefGoogle Scholar
  34. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116: 882–892CrossRefGoogle Scholar
  35. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Rev Ecol Syst 33: 475–505CrossRefGoogle Scholar
  36. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Pl & Soil 199: 213–227CrossRefGoogle Scholar
  37. Westoby M, Leishman MR, Lord JM (1995) On missinterpreting the ‘phylogentic correction’. J Ecol 83: 531–534CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2015

Authors and Affiliations

  • Francesco de Bello
    • 1
    • 2
  • Matty P. Berg
    • 3
    • 4
  • André T. C. Dias
    • 5
  • Jose Alexandre F. Diniz-Filho
    • 6
  • Lars Götzenberger
    • 2
  • Joaquín Hortal
    • 6
    • 7
  • Richard J. Ladle
    • 8
    • 9
  • Jan Lepš
    • 1
    • 10
  1. 1.Department of Botany, Faculty of SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Department of Ecological SciencesVU University, AmsterdamAmsterdamThe Netherland
  4. 4.Conservation Ecology, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
  5. 5.Departamento de Ecologia, Instituto de Biologia Roberto Alcântara GomesUniversidade do Estado do Rio de Janeiro – UERJRio de JaneiroBrazil
  6. 6.Departamento de Ecologia, Instituto de Ciências BiologicasUniversidade Federal de GoiásGoiâniaBrazil
  7. 7.Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales (MNCN-CSIC)MadridSpain
  8. 8.ICBS, Universidade Federal de AlagoasMaceióBrazil
  9. 9.School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  10. 10.Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic

Personalised recommendations