Folia Geobotanica

, Volume 50, Issue 2, pp 161–174 | Cite as

Explaining species distributions by traits of bryophytes and vascular plants in a patchy landscape

  • Daniel Udd
  • Kalle Mälson
  • Sebastian Sundberg
  • Håkan RydinEmail author


The species pool theory helps us understand species distributions at different geographical scales. In theory, species pools consist of species passing the filters between different geographical scales. Filters of dispersal and environment act between the regional and local pools, while filters of biotic interactions act between the local and the community pools. We studied bryophytes and vascular plants restricted to rich (calcareous) fens that occur as patches in a forested landscape. We then examined their frequencies and abundances at the local and regional scales and related the results to traits important for dispersal and competition. Our results show that weft-forming bryophytes and vascular plants with far-creeping rhizomes have higher local frequency than predicted from their regional frequency. Dispersal traits did not explain any variation in the distributions. This indicates that environmental and biotic filters are more important than dispersal limitation at the regional scale, and that clonal expansion is the most important factor for high frequency and abundance at the local scale in these nutrient poor habitats.


dispersal niche peatland rich fen spatial scales species pool 



Financial support was obtained from the Swedish Research Council Formas and the Swedish Environmental Protection Agency.


  1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300Google Scholar
  2. Bisang I, Ehrlén J, Hedenäs L (2004) Mate limited reproductive success in two dioicous mosses. Oikos 104:291–298CrossRefGoogle Scholar
  3. Boutin C, Keddy P A (1993) A functional classification of wetland plants. J Veg Sci 4:591–600CrossRefGoogle Scholar
  4. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  5. Chust G, Pérez-Haase A, Chave J, Pretus JL (2006) Floristic patterns and plant traits of Mediterranean communities in fragmented habitats. J Biogeogr 33:1235–1245CrossRefGoogle Scholar
  6. Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from coastal California woody plants. J Ecol 98:814–821CrossRefGoogle Scholar
  7. Crawley MJ (2005) Statistics: An Introduction using R. WileyGoogle Scholar
  8. de Bello F, Price JN, Münkemüller T, Liira J, Zobel M, Thuiller W, Gerhold P, Götzenberger L, Lavergne S, Lepš J, Zobel K, Pärtel M. (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273PubMedCrossRefGoogle Scholar
  9. Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514CrossRefGoogle Scholar
  10. Eriksson L, Henkel H (2002) Geofysik. In Fredén C (ed) Berg och jord Ed 3. Sveriges nationalatlas, pp 76–101Google Scholar
  11. Granath G, Strengbom J, Rydin H (2010) Rapid ecosystem shifts in peatlands: linking plant physiology and succession. Ecology 91:3047–3056PubMedCrossRefGoogle Scholar
  12. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology: a functional approach to common British species. Castlepoint PressGoogle Scholar
  13. Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  14. Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704CrossRefGoogle Scholar
  15. Hájek M, Tichý L, Schamp BS, Zelený D, Roleček J, Hájková P, Apostolova I, Dítě D (2007) Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos 116:1311–1322CrossRefGoogle Scholar
  16. Hájkova P, Hájek M (2004) Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot 39:335–351CrossRefGoogle Scholar
  17. Hallingbäck T, Hedenäs L, Weibull H (2006) Ny checklista för Sveriges mossor. Sven Bot Tidskr 100:96–148Google Scholar
  18. Hedenäs L (2003) The European species of the Calliergon-Scorpidium-Drepanocladus complex, including some related or similar species. Meylania 28:1–116Google Scholar
  19. Hill MO, Preston CD, Bosanquet SD, Roy DB (2007) BRYOATT – Attributes of British and Irish mosses, liverworts and hornworts with information on native status, size, life form, life history, geography and habitat. CEH PublicationGoogle Scholar
  20. Hill MO, Preston CD, Roy DB (2004) PLANTATT – Attributes of British and Irish plants: status, size, life history, geography and habitats. CEH PublicationGoogle Scholar
  21. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520PubMedCrossRefGoogle Scholar
  22. Holyoak M, Leibold MA, Mouquet NM, Holt RD, Hoopes MF (2005) Metacommunities: A framework for large-scale community ecology. In Holyoak M, Leibold MMA, Holt RD (eds) Metacommunities – Spatial dynamics and ecological communities. The University of Chicago Press, pp 1–32Google Scholar
  23. Horsák M, Hájek M, Spitale D, Hájková P, Dítě D, Nekola JC (2012) The age of island-like habitats impacts habitat specialist species richness. Ecology 93:1106–1114PubMedCrossRefGoogle Scholar
  24. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Sym 22:415–427.CrossRefGoogle Scholar
  25. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L et al. (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  26. Kuhry P, Nicholson BJ, Gignac LD, Vitt DH, Bayley SE (1993) Development of Sphagnum-dominated peatlands in boreal continental Canada. Can J Bot 71:10–22CrossRefGoogle Scholar
  27. Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11Google Scholar
  28. Latzel V, Klimešová J, Doležal J, Pyšek P, Tackenberg O, Prach K (2011) The association of dispersal and persistence traits of plants with different stages of succession in Central European man-made habitats. Folia Geobot 46:289–302CrossRefGoogle Scholar
  29. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613CrossRefGoogle Scholar
  30. Löbel S, Rydin H (2010) Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct Ecol 24:887–897CrossRefGoogle Scholar
  31. Löbel S, Snäll T, Rydin H (2009) Mating system, reproduction mode and diaspore size affect metacommunity diversity. J Ecol 97:176–185CrossRefGoogle Scholar
  32. Löfgren A, Jerling L (2002) Species richness, extinction and immigration rates of vascular plants on islands in the Stockholm archipelago, Sweden, during a century of ceasing management. Folia Geobot 37:297–308CrossRefGoogle Scholar
  33. Lönnell N (2014) Dispersal of bryophytes across landscapes. Ph.D. thesis, Stockholm UniversityGoogle Scholar
  34. Mayfield MM, Levine JM 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093PubMedCrossRefGoogle Scholar
  35. Mossberg B, Stenberg L (2003) Den nya nordiska floran. Wahlström & WidstrandGoogle Scholar
  36. Økland RH (1994) Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. J Veg Sci 5:127–138CrossRefGoogle Scholar
  37. Oksanen J, Blanchet FG, Kindt K, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-10. Available at
  38. Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 75:111–117CrossRefGoogle Scholar
  39. Podani J, Schmera D (2006) On dendrogram-based measures of functional diversity. Oikos 115: 179–185CrossRefGoogle Scholar
  40. Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361CrossRefGoogle Scholar
  41. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  42. Rydin H (1986) Competition and niche separation in Sphagnum. Can J Bot 64:1817-1824CrossRefGoogle Scholar
  43. Rydin H (2009) Population and community ecology of bryophytes. In Shaw AJ, Goffinet B (eds), Bryophyte Biology. Ed 2. Cambridge University Press, pp 393–444Google Scholar
  44. Rydin H, Jeglum JK (2013) The biology of peatlands. Ed 2. Oxford University PressGoogle Scholar
  45. Salisbury E (1974) Seed size and mass in relation to environment. Proc R Soc Lond B 186:83–88CrossRefGoogle Scholar
  46. Schamp B, Hettenbergerová E, Hájek M (2011) Testing community assembly predictions for nominal and continuous plant traits in species-rich grasslands. Preslia 83:329–346Google Scholar
  47. SMHI 2011. Klimatdata. SMHI. Available at
  48. Soons MB, van der Vlugt C, van Lith B, Heil GW, Klaassen M (2008) Small seed size increases the potential for dispersal of wetland plants by ducks. J Ecol 96:619–627CrossRefGoogle Scholar
  49. Sosnová M, van Diggelen R, Macek P, Klimešová J (2011) Distribution of clonal growth traits among wetland habitats. Aquat Bot 95:88–93CrossRefGoogle Scholar
  50. Sundberg S (2006) Åtgärdsprogram för bevarande av rikkärr [Action plan for Swedish rich fens]. Naturvårdsverket, Rapport 5601, StockholmGoogle Scholar
  51. Sundberg S (2012) Quick target vegetation recovery after restorative shrub removal and mowing in a calcareous fen. Rest Ecol 20:331–338CrossRefGoogle Scholar
  52. Sundberg S, Hansson J, Rydin H (2006) Colonization of Sphagnum on land uplift islands in the Baltic Sea: time, area, distance and life history. J Biogeogr 33:1479–1491CrossRefGoogle Scholar
  53. Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. J Ecol 90:268–278CrossRefGoogle Scholar
  54. Svensson BM, Rydin H, Carlsson BÅ (2013) Clonality in the plant community. In van der Maarel E, Franklin J (eds), Vegetation ecology. Wiley-Blackwell, pp 141–163Google Scholar
  55. Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307CrossRefGoogle Scholar
  56. Vitt DH, Slack NG (1975) An analysis of the vegetation of Sphagnum-dominated kettle-hole bogs in relation to environmental gradients. Canad J Bot 53:332–359Google Scholar
  57. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  58. Zobel M (1997) The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol 12:266–269PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2015

Authors and Affiliations

  • Daniel Udd
    • 1
  • Kalle Mälson
    • 2
  • Sebastian Sundberg
    • 3
  • Håkan Rydin
    • 4
    Email author
  1. 1.Dalarna County Administrative BoardFalunSweden
  2. 2.Uppsala County Administrative BoardUppsalaSweden
  3. 3.The Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Department of Plant Ecology and Evolution, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations