Folia Geobotanica

, Volume 49, Issue 3, pp 361–384 | Cite as

Environmental, Spatial and Structural Components in the Composition of Mountain Forest in the Bavarian Alps

  • Hagen S. Fischer
  • Barbara Michler
  • Jörg Ewald


A combined systematic and stratified sampling design was conducted in mountain forests of the Bavarian Alps to find the principal dimensions of compositional variation of vegetation and their environmental drivers. In 1,505 plots species composition, forest types and soil profiles were recorded. Data from 14 climate stations were included. As we hypothesized that the tree layer is more influenced by management than the understorey and that the former modifies the habitat of the latter, the two matrices were analysed separately and the species composition of the tree layer was used as a structural predictor variable for the understorey. We applied constrained ordination to reveal the main gradients in floristic composition and variance partitioning to examine the portions of climatic, edaphic, spatial and structural components. Ellenberg indicator values and a generalized linear model were used to test whether a significant spatial gradient exists from east to west, the main spatial extent of the investigation area. Forest types were used as an overlay to assess the underlying environmental factors. It turned out that explained variance of the tree layer was considerably lower than in the understorey. Tree layer composition was more influenced by climatic variables than by soil. In the understorey, edaphic and climatic variables contributed almost equally to explained variance, but the tree layer had an additional explanatory power. No continentality gradient could be detected within the investigation area. Plant communities were well separated along gradients of acidity, moisture, nutrients and climate, which broadly confirms the known gradients for montane and subalpine zonal forests in the region. The study provides a quantitative synthesis of the knowledge on a diverse set of community types, which has so far been subject to disparate and sectorial treatment in the Bavarian Alps.


Bavarian Alps Constrained ordination Environmental gradients Forest management Species composition Variance partitioning 



The research presented here forms part of the project “Forest Information System for the Northern Alps” (, which was funded by the European Fund for Regional Development (EFRE) within the “INTERREG Bayern – Österreich 2007–2013” programme, the Bavarian Forest Administration and the Bavaria State Forest Enterprise (BaySF). We are indebted to the Bavarian State Institute of Forestry’s “Maps for the future” crew. The digital elevation model was obtained from the Bavarian Topographical Survey (LVG), soil maps were obtained from the Bavarian State Agency for the Environment (LfU), and climate data were obtained from the German Meteorological Service (DWD). We would like to express our thanks to the field teams for collecting the data and anonymous reviewers for valuable and constructive comments that have helped to improve the manuscript consideraby.

Supplementary material

12224_2013_9185_MOESM1_ESM.pdf (155 kb)
Fig. S1 (PDF 155 kb)
12224_2013_9185_MOESM2_ESM.pdf (155 kb)
Fig. S2 (PDF 155 kb)
12224_2013_9185_MOESM3_ESM.pdf (124 kb)
Fig. S3 (PDF 123 kb)
12224_2013_9185_MOESM4_ESM.pdf (198 kb)
Fig. S4 (PDF 197 kb)


  1. Allen TFH, Starr TB (1982) Hierarchy. Perspectives for ecological complexity. University of Chicago Press, ChicagoGoogle Scholar
  2. Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35−47CrossRefGoogle Scholar
  3. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045−1055CrossRefGoogle Scholar
  4. Carr SC, Robertson KM, Platt WJ, Peet RK (2009) A model of geographical, environmental and regional variation in vegetation composition of pyrogenic grasslands of Florida. J Biogeogr 36:1600–1612CrossRefGoogle Scholar
  5. Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, Rodwell JS, Schaminée JHJ, Spencer N (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veg Sci 22:582–597CrossRefGoogle Scholar
  6. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  7. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley & Sons, New YorkGoogle Scholar
  8. Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, Ertl S, Essl F, Niklfeld H (2011) Post-glacial migration lag restricts range filling of plants in the European Alps. Global Ecol Biogeogr 21:829–840CrossRefGoogle Scholar
  9. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W (2003) Zeigerwerte von Pflanzen in Mitteleuropa – Datenbank. Scripta Geobotanica XVIII, Erich Goltze, GöttingenGoogle Scholar
  10. Ewald J (1997) Die Bergmischwälder der Bayerischen Alpen – Soziologie, Standortbindung und Verbreitung. Dissertationes Botanicae 290, Cramer, BerlinGoogle Scholar
  11. Ewald J (1999) Soziologie und Standortbindung subalpiner Fichtenwälder in den Bayerischen Alpen. Tuexenia 19:107125Google Scholar
  12. Ewald J (2000) The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Appl Veg Sci 3:123134CrossRefGoogle Scholar
  13. Ewald J (2008) Plant species richness in mountain forests of the Bavarian Alps. Pl Biosyst 142:594603CrossRefGoogle Scholar
  14. Ewald J (2009) Waldinformationssystem Nordalpen. WINALP sammelt Wissen zum Schutz der Bergwälder. Waldforsch Aktuell 30:45–46Google Scholar
  15. Ewald J, Binner S (2007) Werkzeuge zur Bestimmung der Waldtypen im bayerischen Hochgebirge. Waldökol online 5:25–77Google Scholar
  16. Ewald J, Reuther M, Nechwatal J, Lang K (2000) Monitoring von Schäden in Waldökosystemen des bayerischen Alpenraumes. Materialien 155, Bayerisches Staatsmininsterium für Landesentwicklung und Umweltfragen, MünchenGoogle Scholar
  17. FAO (2000) FRA 2000. On definitions of forest and forest change. Forest Resources Assessment Programme, Working Paper 33, Rome. Available at: (Accessed on 20 May 2013)
  18. French LJ, Smith GF, Kelly DL, Mitchell FJ, O’Donoghue S, Iremonger SF, McKee A-M (2008) Ground flora communities in temperate oceanic plantation forests and the influence of silvicultural, geographic and edaphic factors. Forest Ecol Managem 255:476–494CrossRefGoogle Scholar
  19. Grabherr G, Koch G, Kirchmeir H, Koch G et al. (1998) Hemerobie österreichischer Waldökosysteme. Veröffentlichungen des Österreichischen MaB-Programms 17, Österreichische Akademie der Wissenschaften, Universitätsverlag Wagner, WienGoogle Scholar
  20. Inventaire Forestier National (2011) La forêt francaise. Available at: (Accessed on 13 January 2012)
  21. Jansen F, Dengler J (2008) GermanSL Eine universelle taxonomische Referenzliste für Vegetationsdatenbanken in Deutschland. GermanSL A universal taxonomic reference list for phytosociological databases in Germany. Tuexenia 28:239–253Google Scholar
  22. Keller M (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Eidg. Forschungsanstalt WSL, BirmensdorfGoogle Scholar
  23. Kent M, Coker P (1992) Vegetation description and analysis - a practical approach. Belhaven Press, LondonGoogle Scholar
  24. Klemmt H-J, Ewald J (2012) Wachstumskundliche Unterschiede der Waldtypen in den Bayerischen Alpen. LWF Aktuell 87:18–19Google Scholar
  25. Kuoch R (1954) Wälder im Verbreitungsgebiet der Weißtanne. Mitt Schweiz Anst Forstl Versuchswesen 30:133–260Google Scholar
  26. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  27. Lexer MJ, Hönninger K, Scheifinger H, Matulla C, Groll N, Kromp-Kolb H (2000) The sensitivity of central European mountain forests to scenarios of climatic change: methodological frame for a large-scale risk assessment. Silva Fennica 34:113–129CrossRefGoogle Scholar
  28. Mayer H (1974) Wälder des Ostalpenraumes. Standort, Aufbau u. waldbauliche Bedeutung der wichtigsten Waldgesellschaften in den Ostalpen samt Vorland. Gustav Fischer, StuttgartGoogle Scholar
  29. Meier ES, Kienast F, Pearman PB, Svenning J-C, Thuiller W, Araújo MB et al. (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048CrossRefGoogle Scholar
  30. Oberdorfer E (2001) Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. Ed. 8. Eugen Ulmer, StuttgartGoogle Scholar
  31. Oberdorfer E, Müller T (1984) Zur Systematik artenreicher Buchenwälder, insbesondere im praealpinen Nordsaum der Alpen. Phytocoenologica 12:539–562CrossRefGoogle Scholar
  32. Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol Monogr 68:151–182CrossRefGoogle Scholar
  33. Økland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia, Supplement 1, Botanical Garden and Museum, University of Oslo, OsloGoogle Scholar
  34. Økland RH (1999) On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–136CrossRefGoogle Scholar
  35. Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder – Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung. Paul Haupt, BernGoogle Scholar
  36. Otýpková Z, Chytrý M, Tichý L, Pechanec V, Jongepier J W, Hájek O (2011) Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia (Bratislava) 66:266–274CrossRefGoogle Scholar
  37. Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer Verlag, StuttgartGoogle Scholar
  38. Polley H, Bolte A (2010) Dritte Bundeswaldinventur beginnt 2011. AFZ-DerWald 17:35–37Google Scholar
  39. Reger B, Kölling C, Ewald J (2011) Modelling effective thermal climate for mountain forests in the Bavarian Alps: Which is the best model? J Veg Sci 22:677–687CrossRefGoogle Scholar
  40. Reger B, Schüpferling R, Beck J, Dietz E, Morovitz D, Schaller R, Wilhelm G, Ewald J (2012) WINALPecobase – Ecological database of mountain forests in the Bavarian Alps. Biodivers Ecol 4:167–172CrossRefGoogle Scholar
  41. Roberts MR, Wuest LJ (1999) Plant communities of New Brunswick in relation to environmental variation. J Veg Sci 10:321–334CrossRefGoogle Scholar
  42. Rodríguez-Calcerrada J, Nanos N, Rey MC, Heredia UL, Escribano R, Gil L (2011) Small-scale variation of vegetation in a mixed forest understorey is partly controlled by the effect of overstory composition on litter accumulation. J Forest Res 16:473–483CrossRefGoogle Scholar
  43. Shipley B, Keddy PA (1994) Evaluating the evidence for competitive hierarchies in plant communities. Oikos 69:340–345CrossRefGoogle Scholar
  44. Sponagel H (2005) Bodenkundliche Kartieranleitung. Mit 103 Tabellen und 31 Listen. Ed. 5. Schweizerbart, StuttgartGoogle Scholar
  45. Svenning J-C, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033CrossRefGoogle Scholar
  46. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Software for canonical community ordination (version 4.5). Biometris, WageningenGoogle Scholar
  47. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, ReadingGoogle Scholar
  48. Walentowski H (1998) Die Weißtannen-Waldgesellschaften Bayerns. Eine vegetationskundliche Studie mit europäischem Bezug, mit waldbaulichen Anmerkungen und naturschutzfachlicher Bewertung. Dissertationes botanicae 291, Cramer, BerlinGoogle Scholar
  49. Wildi O (2010) Data analysis in vegetation ecology. Ed. 1. Wiley-Blackwell, OxfordGoogle Scholar
  50. Willner W, Grabherr G (2007) Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  51. Willner W, Pietro RD, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32:1011–1018CrossRefGoogle Scholar
  52. Zimmermann L, Rötzer T, Hera U, Maier H, Schulz C, Kölling C (2007) Konzept für die Erstellung neuer hochaufgelöster Klimakarten für die Wälder Bayerns als Bestandteil eines forstlichen Standortinformationssystems. In Matzarakis A, Meyer H (eds) Proceedings zur 6. Fachtagung BIOMET des Fachausschusses Biometeorologie der Deutschen Meteorologischen Gesellschaft e.V. Berichte des Meteorologischen Institutes der Universität Freiburg 16:152–159Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2014

Authors and Affiliations

  • Hagen S. Fischer
    • 1
  • Barbara Michler
    • 1
  • Jörg Ewald
    • 1
  1. 1.University of Applied Sciences Weihenstephan-TriesdorfFreisingGermany

Personalised recommendations