Folia Geobotanica

, Volume 48, Issue 3, pp 373–391 | Cite as

Functional Traits in a Species-Rich Grassland and a Short-Term Change in Management: Is There a Competition-Colonization Trade-Off?

  • Jitka Klimešová
  • Ondřej Mudrák
  • Jiři Doležal
  • Michal Hájek
  • Martin Dančák
  • Leoš Klimeš


The species richness of grasslands generally cannot be fully restored after changes in management. Some species with small statures and basal leaf rosettes can be lost forever. The same species, however, seem to possess the traits necessary for successful re-colonization – they produce small, easily dispersable seeds, numerous seedlings and have lasting seed banks. We tested the hypothesis that plants in species-rich grasslands can be characterized by a negative correlation between their competitive ability and potential for generative regeneration, i.e. by a competition-colonization trade-off. An analysis of the traits of 95 grassland species supported this hypothesis. We then conducted a manipulative experiment in three different meadow communities in the Bílé Karpaty Mts. The experiment involved characterizing species traits during periods of different grassland management regimes in the years 1997–2000 and comparing these with the original management regime, which was restored between 2000 and 2003. We found out that the hypothesis only holds true for the pooled dataset for all three communities. When the individual meadow communities were analyzed separately, plant traits other than those responsible for the competition-colonization trade-off appear to be characteristic of responsive species, e.g. shoot lifespan or phenology. Our results imply that despite the general trade-offs found in large comparative studies, the plant response in a specific community is constrained by the local species pool.


Abandonment Generative regeneration Meadow management Plant persistence Plant traits Restoration of management 



We are indebted to Jan W. Jongepier for language corrections, and to Tomáš Herben and two anonymous referees for insightful comments. This project was financially supported by projects GA526/09/0963 and VaV SP/2d3/54/07, and the long-term research development project No. RVO 67985939. This work would not have been possible without cooperation and logistic support from the Bílé Karpaty Protected Landscape Area Authority, namely Ivana Jongepierová. The following botanists assisted us in the field: K. Vincenecová, J. Němec, P. Hájková, Z. Preislerová, R.J. Vašut, M. Havlová, A. Pečinka, N. Wernerová, Z. Dočkalová, K. Fajmon, M. Ott, M. Perný, I. Škodová, M. Derková, M. Theuerkauf, K. Devánová, M. Bruchter, Š. Králová, D. Simonová, A. Šmídová, K. Merunková and P. Konvalinková.

Supplementary material

12224_2013_9176_MOESM1_ESM.pdf (141 kb)
ESM 1 (PDF 140 kb)


  1. Alsos IG, Müller E, Eidesen BP (2013) Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage. Polar Biol 36:819–830Google Scholar
  2. Billeter R, Peintinger M, Diemer M (2007) Restoration of montane fen meadows by mowing remains possible after 4–35 years of abandonment. Bot Helv 117:1–13CrossRefGoogle Scholar
  3. Doležal J, Mazůrek P, Klimešová J (2010) Oak decline in southern Moravia mediated by climate change impact on earlywood and latewood formation. Preslia 82:289–306Google Scholar
  4. Doležal J, Mašková Z, Lepš J, Steinbachová D, de Bello F, Klimešová J, Tackenberg O, Zemek F, Květ J (2011) Positive long-term effect of mulching on species and functional trait diversity in a nutrient-poor mountain meadow in Central Europe. Agric Ecosyst Environm 145:10–28CrossRefGoogle Scholar
  5. Fox JW (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28:86–92PubMedCrossRefGoogle Scholar
  6. Galvánek D, Lepš J (2012) The effect of management on productivity, litter accumulation and seedling recruitment in a Carpathian mountain grassland. Pl Ecol 213:523–533CrossRefGoogle Scholar
  7. Gonzalez SL, Ghermandi L (2012) Comparison of methods to estimate soil seed banks: the role of seed size and mass. Community Ecol 13:238–242CrossRefGoogle Scholar
  8. Hájková P, Hájek M, Kintrová K (2009) How can we effectively restore species richness and natural composition of a Molinia-invaded fen? J Appl Ecol 46:417–425CrossRefGoogle Scholar
  9. Hejcman M, Češková M, Pavlů V (2010) Control of Molinia caerulea by cutting management on sub-alpine grassland. Flora 205:577–582CrossRefGoogle Scholar
  10. Hellstrőm K, Huhta AP, Rautio P, Tuomi J (2009) Seed introduction and gap creation facilitate restoration of meadow species richness. J Nat Conservation 17:236–244CrossRefGoogle Scholar
  11. Herben T, Nováková Z, Klimešová J, Hrouda L (2012) Species traits and plant performance: functional trade-offs in a large set of species in a botanical garden. J Ecol 100:1522–1533CrossRefGoogle Scholar
  12. Herben T, Březina S, Hadincová V, Krahulec F, Skálová H (2013) Mutual replacement of species in space in a grassland community: is there an evidence for functional complementarity of replacement groups? Oikos 122:111–121CrossRefGoogle Scholar
  13. Horník J, Janeček Š, Klimešová J, Doležal J, Janečková P, Jiráská Š, Lanta V (2012) Species-area curves revisited: the effects of model choice on parameter sensitivity to environmental, community and individual plant characteristics. Pl Ecol 213:1675–1686CrossRefGoogle Scholar
  14. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics 15:651–674CrossRefGoogle Scholar
  15. Jongepierová I (2008) (ed) Louky Bílých Karpat (Grasslands of the White Carpathian Mountains). ZO ČSOP Bílé Karpaty, Veselí nad MoravouGoogle Scholar
  16. Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conservation 104:319–328CrossRefGoogle Scholar
  17. Kalamees R, Puessa K, Zobel K, Zobel M (2012) Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl Veg Sci 15:208–218CrossRefGoogle Scholar
  18. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Gőtzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Rőmermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  19. Klimeš L (2005) A transient expansion of sown plants and diaspore limitation. Folia Geobot 40:69–75CrossRefGoogle Scholar
  20. Klimeš L, Klimešová J (2001) The effects of mowing and fertilization on carbohydrate reserves and regrowth of grasses: do they promote plant coexistence in species-rich meadows ? Evol Ecol 15:363–382CrossRefGoogle Scholar
  21. Klimeš L, Hájek M, Mudrák O, Dančák M, Preislerová Z, Hájková P, Jongepierová I, Klimešová J (2013) Effects of changes in management on resistance and resilience in three grassland communities. Appl Veg Sci. doi: 10.1111/avsc.12032
  22. Klimešová J, Klimeš L (2006) CLO-PLA3: a database of clonal growth architecture of Central-European plants. Available at: http://clopla.butbn.cas.czGoogle Scholar
  23. Klimešová J, Janeček Š, Horník J, Doležal J (2011) Effect of the method of assessing and weighting abundance on the interpretation of the relationship between plant clonal traits and meadow management. Preslia 83:437–453Google Scholar
  24. Kostrakiewicz K (2011) The Effect of gaps size on colonization process in Molinietum caeruleae meadows with different habitat conditions. Polish J Ecol 59:677–686Google Scholar
  25. Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirschner J, Štěpánek J (2002) Klíč ke květeně České republiky (Key to the Flora of the Czech Republic). Academia, PrahaGoogle Scholar
  26. Lanta V, Klimešová J, Martincová K, Janeček Š, Doležal J, Rosenthal J, Lepš J, Klimeš L (2011) A test of the explanatory power of plant functional traits on the individual and population levels. Perspect Pl Ecol 13:189–199CrossRefGoogle Scholar
  27. Lepš J (1999) Nutrient status, disturbance and competition:an experimental test of relationships in a wet meadow. J Veg Sci 10:219–230CrossRefGoogle Scholar
  28. Lepš J (2004) What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl Ecol 5:529–534CrossRefGoogle Scholar
  29. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  30. Mouquet N, Moore JL, Loreau M (2002) Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecol Lett 5:56–65CrossRefGoogle Scholar
  31. Mudrák O, Doležal J, Hájek M, Dančák M, Klimeš L, Klimešová J (2013) Plant seedlings in a species-rich meadow: effect of management, vegetation type, and functional traits. Appl Veg Sci 16:286–295CrossRefGoogle Scholar
  32. Münzbergová Z, Herben T (2005) Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145:1–8PubMedCrossRefGoogle Scholar
  33. Piqueray J, Bisteau E, Cristofoli S, Palm R, Poschlod P, Mahy G (2011a) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches Biol Conservation 144:1619–1629CrossRefGoogle Scholar
  34. Piqueray J, Bottin G, Delescaille LM, Bisteau E, Colinet G, Mahy G (2011b) Rapid restoration of a species-rich ecosystem assessed from soil and vegetation indicators: The case of calcareous grasslands restored from forest stands. Ecol Indicators 11:724–733CrossRefGoogle Scholar
  35. Prach K, Jongepierová I, Řehounková K (2013) Large-scale restoration of dry grasslands on ex-arable land using a regional seed mixture: establishment of target species. Restor Ecol 21:33–39CrossRefGoogle Scholar
  36. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at:
  37. Saar L, Takkis K, Pärtel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Diversity Distrib 18:808–817CrossRefGoogle Scholar
  38. Seifan M, Seifan T, Schiffers K. Jeltsch F, Tielborger K (2013) Beyond the competition-colonization trade-off: linking multiple trait response to disturbance characteristics. Amer Naturalist 181:151–160CrossRefGoogle Scholar
  39. Špačková I, Kotorová I, Lepš J (1998) Sensitivity of seedling recruitment to moss, litter and dominant removal in an oligotrophic wet meadow. Folia Geobot 33:17–30CrossRefGoogle Scholar
  40. Schamp B, Hettenbergerová E, Hájek M (2011) Testing community assembly predictions for nominal and continuous plant traits in species-rich grasslands. Preslia 83:329–346Google Scholar
  41. Spiegelberger T, Matthies D, Muller-Scharer H, Schaffner U (2006) Scale-dependent effects of land use on plant species richness of mountain grassland in the European Alps. Ecography 29:541–548CrossRefGoogle Scholar
  42. Stampfli A, Zeiter M (1999) Plant species decline due to abandonment of meadows cannot easily be reversed by mowing. A case study from the southern Alps. J Veg Sci 10:151–164Google Scholar
  43. Stampfli A, Zeiter M (2004) Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. J Ecol 92:568–576CrossRefGoogle Scholar
  44. Stampfli A, Zeiter M (2008) Mechanisms of structural change derived from patterns of seedling emergence and mortality in a semi-natural meadow. J Veg Sci 19:563–574CrossRefGoogle Scholar
  45. Somodi I, Viragh K, Podani J (2008) The effect of the expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semi-arid grassland. Appl Veg Sci 11:187–194CrossRefGoogle Scholar
  46. Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184CrossRefGoogle Scholar
  47. ter Braak CJF, Šmilauer P (2002) Reference manual and user’s guide to Canoco for Windows: Software for Canonical Community Ordination. Microcomputer Power, IthacaGoogle Scholar
  48. ter Heerdt GNJ, Verweij GL, Bekker RM, Bakker JP (1996) An improved method for seed-bank analysis: Seedling emergence after removing the soil by sieving. Funct Ecol 10:144–151CrossRefGoogle Scholar
  49. Valkó O, Tőrők P, Tothmeresz B, Matus G (2011) Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: Can restoration be based on local seed banks? Restor Ecol 19:9–15CrossRefGoogle Scholar
  50. van der Maarel E, Sykes MT (1993) Small-scale plant-species turnover in a limestone grasslands – the carousel model and some comments on the niche concept. J Veg Sci 4:179–188CrossRefGoogle Scholar
  51. Vítová A, Lepš J (2011) Experimental assessment of dispersal and habitat limitation in an oligotrophic wet meadow. Pl Ecol 212:1231–1242CrossRefGoogle Scholar
  52. Wagner M, Pywell RF, Knopp T, Bullock JM, Heard MS (2011) The germination niches of grassland species targeted for restoration: effects of seed pre-treatments. Seed Sci Res 21:117–131CrossRefGoogle Scholar
  53. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  • Jitka Klimešová
    • 1
  • Ondřej Mudrák
    • 1
  • Jiři Doležal
    • 1
    • 5
  • Michal Hájek
    • 2
    • 3
  • Martin Dančák
    • 4
  • Leoš Klimeš
    • 1
  1. 1.Department of Functional Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  2. 2.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Vegetation Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  4. 4.Department of Ecology, Faculty of SciencePalacký UniversityOlomouc-HoliceCzech Republic
  5. 5.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations