Advertisement

Folia Geobotanica

, Volume 48, Issue 4, pp 537–554 | Cite as

Mating System and Hybridization of the Cyanus triumfetti and C. montanus Groups (Asteraceae)

  • Katarína Olšavská
  • Carsten J. Löser
Article

Abstract

Mode of reproduction and presence of reproductive barriers were studied in two closely related members of the genus Cyanus: the C. triumfetti (diploid 2n = 22) and C. montanus (tetraploid 2n = 44) groups. Based on results from isolation and emasculation experiments, taxa of these groups can be considered allogamous with a low selfing rate (0.07 %–0.21 % of achenes developed after selfing). Taxa of the C. triumfetti group hybridize easily and produce viable progeny. Differences in the percentage of well-developed achenes per capitulum obtained from interspecific crosses between members of the C. triumfetti group suggested different levels of reproductive isolation. The percentage of well-developed achenes of most homoploid crosses was 3.47 %–8.87 %. Higher percentages of well-developed achenes were obtained from crosses between Eastern Carpathian C. pinnatifidus and Alpine C. triumfetti s. str. (18.36 % ; 26.56 %) and between geographically close taxa in Central Europe (C. dominii, C. strictus and ‘intermediate morphotype’; 12.75 % –17.60 %), which indicate their overall close relatedness. Crossing geographically remote C. strictus and C. triumfetti s. str. yielded no or only few (0.99 %) well-developed achenes, indicating an increased degree of incompatibility in allopatry. The success of heteroploid crosses between plants belonging to different groups was reduced (2.96 %) and suggested reproductive incompatibilities between ploidy levels. The progeny of heteroploid crosses comprised 63 % of triploids of presumable hybrid origin on tetraploid as well as diploid maternal plants. Another 15.22 % of progeny had the maternal cytotype, probably resulting from selfing. Low viability of heteroploid hybrids supports the existence of post-zygotic mechanisms.

Keywords

Centaurea section Cyanus Compositae Heteroploid hybridization Homoploid hybridization Reproductive barriers Self-incompatibility 

Notes

Acknowledgments

This study was supported by the Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (VEGA 2/0075/11) and Research and Development Support Agency of the Slovak Republic (APVV-0320-10). This study received funds also from the Millennium Seed Bank of the Royal Botanic Gardens, Kew (United Kingdom). Michaela Horváthová and Lýdia Skokanová are deeply acknowledged for help with cultivating of plants and performing experiments; Marián Perný, Iva Hodálová and Patrik Mráz are thanked for valuable discussions and critical reading of the manuscript.

Supplementary material

12224_2013_9155_MOESM1_ESM.pdf (119 kb)
ESM 1 (PDF 119 kb)

References

  1. Bancheva S, Stoyanov S (2009) A new species of Cyanus (Asteraceae, Centaureinae) from Southeastern Bulgaria. Novon 19:421–425CrossRefGoogle Scholar
  2. Baksay L (1957) The cytotaxonomy of the species Chrysanthemum maximum Ram., Centaurea montana L., Serratula lycopifolia (Vill.) Kern., and Bupleurum falcatum L., ranging in Europe. Ann Hist Nat Mus Hung 8:155–168Google Scholar
  3. Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503PubMedCrossRefGoogle Scholar
  4. Boršić I, Susanna A, Bancheva S, Garcia-Jacas N (2011) Centaurea sect. Cyanus: nuclear phylogeny, biogeography and life-form evolution. Int J Pl Sci 172:238–249CrossRefGoogle Scholar
  5. Briquet J (1902) Monographie des Centaurées des Alpes Maritimes. In Burnat E (ed) Matériaux pour servir à l’histoire de la flore des Alpes maritimes. Georg & Co., Geneve, Basel, Lyon, pp 1–196Google Scholar
  6. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanism of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22CrossRefGoogle Scholar
  7. Castric V, Vekemans X (2004) Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Molec Ecol 13:2873–2889CrossRefGoogle Scholar
  8. Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61:1773–1780PubMedCrossRefGoogle Scholar
  9. Czapik R (1996) Problems of apomictic reproduction in the families Compositae and Rosaceae. Folia Geobot 31:381–387CrossRefGoogle Scholar
  10. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer-Verlag, BerlinCrossRefGoogle Scholar
  11. Ellstrand NC, Whitkus R, Riesenberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090–5093PubMedCrossRefGoogle Scholar
  12. Ferrer MM, Good-Avila SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytol 173:401–414PubMedCrossRefGoogle Scholar
  13. Gardou C (1972) Recherches biosystématiques sur la section Jacea Cass. et quelques sections voisines du genre Centaurea L. en France et dans les régions limitrophes. Feddes Repert 83:311–472CrossRefGoogle Scholar
  14. Gonnet JF (1992) Flavonoid variation in wild specimens of Centaurea montana (Compositae). Biochem Syst Ecol 20:149–161CrossRefGoogle Scholar
  15. Gonnet JF (1993) Flavonoid variation in wild specimens of Centaurea triumfetti (Compositae) and comments on its relationships with Centaurea montana based on flavonoid fingerprints. Biochem Syst Ecol 21:389–396CrossRefGoogle Scholar
  16. Gonnet JF (1996) Flavonoid glycoside variation in the progeny of wild specimens of Centaurea montana (Compositae) and comments on the origin of their natural diversity. Biochem Syst Ecol 24:447–460CrossRefGoogle Scholar
  17. Grant V (1981) Plant speciation. Ed. 2. Columbia University Press, New YorkGoogle Scholar
  18. Guinochet M. (1957a) Contribution à l΄étude caryologique du genre Centaurea L. sens. lat. Bull Soc Hist Nat Afrique N 48:282–300Google Scholar
  19. Guinochet M (1957b) Quelques remarques sur les relations cytogénétiques entre les Centaurea montana L. et Triumfetti All. Compt Rend Hebd Séances Acad Sci 244:1950–1952Google Scholar
  20. Gugler W (1907) Die Centaureen des Ungarischen Nationalmuseums. Ann Mus Nat Hungar 6:15–297Google Scholar
  21. Hardy OJ, de Loose M, de Loose M, Vekemans X, Meerts P (2001) Allozyme segregation and inter-cytotype mating barriers in the polyploid complex Centaurea jacea. Heredity 87:136–145PubMedCrossRefGoogle Scholar
  22. Janišová M, Škodová I, Hegedüšová K (2012) Reproductive biology of Tephroseris longifolia subsp. moravica, an endemic taxon of European importance. Seed Sci Res 22:113–122CrossRefGoogle Scholar
  23. Koutecký P (2007) Morphological and ploidy level variation of Centaurea phrygia agg. (Asteraceae) in the Czech Republic, Slovakia and Ukraine. Folia Geobot 42:77–102CrossRefGoogle Scholar
  24. Koutecký P, Baďurová T, Štech M, Košnar J, Karásek J (2011) Hybridization between diploid Centaurea pseudophrygia and tetraploid C. jacea (Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Biol J Linn Soc 104:93–106CrossRefGoogle Scholar
  25. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  26. Mráz P (2003) Mentor effects in the genus Hieracium s.str. (Compositae, Lactuceae). Folia Geobot 38:345–350CrossRefGoogle Scholar
  27. Mráz P, Paule J (2006) Experimental hybridization in the genus Hieracium s. str. crosses between diploid taxa. Preslia 78:1–26Google Scholar
  28. Noyes RD (2007) Apomixis in the Asteraceae: Diamond in the Rough. Func Plant Sci Biotech 1:207–222Google Scholar
  29. Olšavská K, Perný M, Kučera J, Hodálová I (2011) Biosystematic study of the Cyanus triumfetti group in Central Europe. Preslia 83:59–98Google Scholar
  30. Olšavská K, Löser C (2012) Cytogeography of European perennial species of the genus Cyanus (Compositae). In Fehrer J, Bambasová V, Fulneček J, Grolichová Z (eds) Program and Abstracts, International Conference on Polyploidy, Hybridization, and Biodiversity, 710 May 2012, Průhonice near Prague. Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, p 73Google Scholar
  31. Olšavská K, Perný M, Španiel S, Šingliarová B (2012) Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas. Pl Syst Evol 298:1463–1482CrossRefGoogle Scholar
  32. Ortiz MA, Talavera S, García-Castaño JL, Tremetsberger K, Stuessy T, Balao F, Casimiro-Soriguer R (2006) Self-incompatibility and floral parameters in Hypochaeris sect. Hypochaeris (Asteraceae). Amer J Bot 93:234–244CrossRefGoogle Scholar
  33. Poddubnaja-Arnoldi VA (1931) Ein Versuch der Anwendung der embryologischen Methode bei der Lösung einiger systematischer Fragen. I. Vergleichende embryologisch-zytologische Untersuchungen über die Gruppe Cynareae, Fam. Compositae. Beih Bot Centralbl 48:141–237Google Scholar
  34. Rendle AB (1975) The classification of flowering plants II. Cambridge University Press, CambridgeGoogle Scholar
  35. Rieseberg LH (1997) Hybrid origins of plant species. Ann Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  36. Rohlf FJ (2002) NTSYSpc: Numerical taxonomy system Version 2.11a. Exeter, SetauketGoogle Scholar
  37. Slovák M, Šingliarová B, Mráz P (2007) Chromosome number and mode of reproduction in Picris hieracioides s.l. (Asteraceae), with notes on some other Picris taxa. Nordic J Bot 25:238–244CrossRefGoogle Scholar
  38. Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232CrossRefGoogle Scholar
  39. Stebbins GL (1969) The significance of hybridization for plant taxonomy and evolution. Taxon 18:26–35CrossRefGoogle Scholar
  40. Štěpánek J, Koutecký P (2004) Centaurea L. In Slavík B, Štěpánková J (eds) Květena České republiky 7 (Flora of the Czech Republic 7). Academia, Praha, pp 426–449Google Scholar
  41. Trávníček P, Eliášová A, Suda J (2010) The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82:149–163Google Scholar
  42. Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176:1059–1088PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Institute of Systematic BotanyFriedrich Schiller UniversityJenaGermany

Personalised recommendations