Advertisement

Folia Geobotanica

, Volume 48, Issue 4, pp 509–521 | Cite as

Soil-Vegetation Relationship in Quartzitic and Ferruginous Brazilian Rocky Outcrops

  • Maria Cristina Teixeira Braga Messias
  • Mariangela Garcia Praça Leite
  • João Augusto Alves Meira Neto
  • Alessandra Rodrigues Kozovits
  • Ricardo Tavares
Article

Abstract

Campo rupestre is a kind of Brazilian rocky outcrop with high biodiversity and many endemic and threatened species. It occurs mainly in the Espinhaço Range in a contact region between Cerrado and/or Caatinga and Atlantic Forest. The Espinhaço Range is recognized as a region with the highest floristic diversity in South America and with many endemic species, most of which are associated with rocky outcrop environments. These, among other peculiarities, recently granted the Espinhaço Range the status of Biosphere Reserve. The relationship between soil and vegetation was studied in campo rupestre areas with quartzite and itabirite rocks. Three habitats in both lithologies were defined by geomorphology as: 1. Slopes with grasslands; 2. Plateaus with grasslands and 3. Valleys with woody savannas. In each lithology, 30 plots (10 × 10 m), 10 in each habitat, were defined. The species and their respective coverage were recorded and soil was sampled to perform chemical and physical analyses. The analyzed soils were similar in being sandy, acidic and with low fertility. Nevertheless, they exhibited differences in chemical and physical properties. Altogether there were 272 species, belonging to 70 families. The canonical correspondence analysis of soil variables and species coverage showed a clear segregation of lithological sites due mainly to the exchangeable content of Ca, Cu, Mg, Mn and S; soil particle size – central tendency and sorting; and the percentage of silt, fine soil and bare rocks. A strong correlation between plant species coverage and soil properties was also found.

Keywords

Ferruginous campos rupestres Metalliferous soil Plant-soil relationships Rocky outcrop vegetation 

Notes

Acknowledgements

We would like to thank SAMARCO S.A. for permitting this research, FAPEMIG, for the financial support (CRA – APQ-00601-08), Jorge L. Silva, Auria Tonaco and Eduardo Ataíde for field assistance.

References

  1. Alves RJV, Kolbek J (2010) Vegetation strategy of Vellozia crinita (Velloziaceae). Biologia (Bratislava) 65:254–264CrossRefGoogle Scholar
  2. Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Advances Ecol Res 7:1–85Google Scholar
  3. APG (Angiosperm Phylogeny Group) (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  4. Benites VM, Schaefer CEGR, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Brasil Bot 30:569–577CrossRefGoogle Scholar
  5. Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27CrossRefGoogle Scholar
  6. Brooks RR (1998) Plants that hyperaccumulate heavy metals, their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CAB International, New YorkGoogle Scholar
  7. Camargo O, Sparovek G (1997) Sampling strategies for tropical forest nutrient cycling studies: a case study in São Paulo, Brazil. Revista Brasil Ci Solo 21:635–642Google Scholar
  8. Conceição AA, Pirani JR (2005) Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais (Delimitation of habitats in rocky outcrops in the Chapada Diamantina, Bahia: substrates, floristic composition and structural aspects). Bol Bot Univ São Paulo 23:85–111Google Scholar
  9. Conceição AA, Pirani JR, Meireles ST (2007) Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Revista Brasil Bot 30:641–656CrossRefGoogle Scholar
  10. Correa TL (2006) Bioacumulação de metais pesados em plantas nativas a partir de suas disponibilidades em rochas e sedimentos: o efeito na cadeia trófica (Heavy metal bioaccumulation in native plants from soil and sediments: the effect in the trophic chain). MSc Thesis, Universidade Federal de Ouro Preto, Ouro PretoGoogle Scholar
  11. Dorr II JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero. Professional Paper, US Geological Survey 641-A, WashingtonGoogle Scholar
  12. Dutra VF (2005) Levantamento de Leguminosae Adans. nos Campos Rupestres do Parque Estadual do Itacolomi, MG: florística, preferência por habitat, aspectos reprodutivos e distribuição geográfica (Leguminosae Adans, of campos rupestres of Itacolomi State Park, Minas Gerais, Brazil: floristic, habitat, reprodution and geographic distribution patterns). Master Thesis, Universidade de Viçosa, ViçosaGoogle Scholar
  13. EMBRAPA (1997) Manual de métodos de análises de solo (A handbook of soil analysis methodology). Ed. 2, Serviço Nacional de Levantamento e Conservação de Solos, Rio de JaneiroGoogle Scholar
  14. EMBRAPA (1999) Sistema brasileiro de classificação de solos (Brazilian system of soil classification). EMBRAPA, Rio de JaneiroGoogle Scholar
  15. FAO (1998) World reference base for soil resources. World Soil Resources Report 84, FAO/ISRIC/ISSS, RomeGoogle Scholar
  16. Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing Co, AustinGoogle Scholar
  17. Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  18. Forzza RC, Leitman PM, Costa AF, Carvalho Jr. AA, Peixoto AL, Walter BMT, Bicudo C, Zappi D, Costa DP, Lleras E, Martinelli G, Lima HC, Prado J, Stehmann JR, Baumgratz JFA, Pirani JR, Sylvestre L, Maia LC, Lohmann LG, Queiroz LP, Silveira M, Coelho MN, Mamede MC, Bastos MNC, Morim MP, Barbosa M, Menezes M, Hopkins M, Secco R, Cavalcanti TB, Souza VC (2012) Lista de espécies da flora do Brasil (Checklist of plant species of Brazil). Jardim Botânico do Rio de Janeiro, Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/2012/
  19. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço Range region, Eastern Brazil. In Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: A guide and strategy for their conservation, Vol. 3. The Americas. WWF/IUCN Publications Unit, Cambridge, pp 397–404Google Scholar
  20. Haridasan M (1982) Aluminium accumulation by some cerrado native species of central Brazil. Pl Soil 65:265–273CrossRefGoogle Scholar
  21. Harley RM, Simons NA (1986) Florula of Mucugê: Chapada Diamantina – Bahia, Brazil. Royal Botanic Gardens, KewGoogle Scholar
  22. Hazelton P, Murphy H (2007) Interpreting soil test results. CSIRO Publishing, MelbourneGoogle Scholar
  23. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers & Conservation 16:2185–2200CrossRefGoogle Scholar
  24. Jansen S, Watanabe T, Smets E (2002) Aluminium accumulation in leaves of 127 species in Melastomataceae, with comments on the order Myrtales. Ann Bot (Oxford) 90:53–64CrossRefGoogle Scholar
  25. Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Pl Cell Environm 15:873–899CrossRefGoogle Scholar
  26. Matsushi Y, Hattanji T, Matsukura Y (2006) Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology 769:92–108CrossRefGoogle Scholar
  27. McCune B, Mefford MJ (1999) PCOrd – Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  28. Meguro M, Pirani JR, Giulietti AM, Mello-Silva R (1994) Phytophysiognomy and composition of the vegetation of Serra do Ambrósio, Minas Gerais, Brazil. Revista Brasil Bot 17:149–166Google Scholar
  29. Messias MCTB, Garcia MGP, Meira Neto JAA, Kozovits AR (2011) Life-form spectra of quartzite and itabirite rocky outcrop sites, Minas Gerais, Brazil. Biota Neotrop 11(2):1–14CrossRefGoogle Scholar
  30. Mollard FPO, Striker GG, Ploschuk EL, Vega AS, Insaustia P (2008) Flooding tolerance of Paspalum dilatatum (Poaceae: Paniceae) from upland and lowland positions in a natural grassland. Flora 203:548–556CrossRefGoogle Scholar
  31. Mourão A, Stehmann JR (2007) Levantamento da flora do campo rupestre sobre canga hematítica couraçada remanescente na mina do Brucutu, Barão de Cocais, Minas Gerais, Brasil (Floristic inventory of the remaining rocky outcrop over ferruginous crust at the Brucutu Mine, Barão de Cocais, Minas Gerais, Brazil). Rodriguesia 58:775–786Google Scholar
  32. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Willey & Sons, New YorkGoogle Scholar
  33. Nimer E (1989) Climatologia do Brasil. (Climatology of Brazil). IBGE, Rio de JaneiroGoogle Scholar
  34. Oliveira Junior AC, Faquin V, Pinto JEBP (2006) Efeitos de calagem e adubação no crescimento e nutrição de arnica (Effects of liming and fertilization on growth and nutrition of Lychnophora ericoides). Hort Brasil 24:347–351CrossRefGoogle Scholar
  35. Porembski S (2007) Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Revista Brasil Bot 30:579–586CrossRefGoogle Scholar
  36. Queiroz LP, Sena TSN, Costa MJSL (1996) Flora vascular da Serra da Jibóia, Santa Terezinha-Bahia. I: O Campo Rupestre (Vascular flora of the Serra da Jibóia, Santa Terezinha-Bahia, Brazil. I. Rocky outcrops). Sitientibus 15:27–40Google Scholar
  37. R Development Core Team (2008) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.r-project.org/
  38. Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Pl Soil 93:107–119CrossRefGoogle Scholar
  39. Sarmiento FO (2002) Human drivers of landscape change: treelines dynamics in neotropical montology. Ecotropicos 15:129–146Google Scholar
  40. Suguio K (1973) Introdução à sedimentologia. (Introduction to the sedimentology). Edgard Blucher, São PauloGoogle Scholar
  41. Teixeira WA, Lemos-Filho JP (1998) Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais (Heavy metals in leaves of woody colonizer species of an iron mining area in Itabirito, Minas Gerais, Brazil). Revista Arvore 22:381–388Google Scholar
  42. ter Braak CJF (1995) Ordination. In Jongman RHG, ter Braak CJF, Van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173CrossRefGoogle Scholar
  43. UNESCO (2005) Latin America the world network of biosphere reserves & Caribbean. Available at: http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?mode=all&code=BRA+06
  44. USDA (1998) Keys to soil taxonomy. United States Department of Agriculture, New YorkGoogle Scholar
  45. Vincent RC, Meguro MM (2008) Influence of soil properties on the abundance of plants species in ferruginous rocky soils vegetation, southeastern Brazil. Revista Brasil Bot 3:377–388Google Scholar
  46. Visser EJW, Colmer TD, Blom CWPM, Voesenek CJ (2000) Changes in growth, porosity and radical oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Pl Cell Environm 23:1237–1245CrossRefGoogle Scholar
  47. Westhoff V, van der Maarel E (1978) The Braun-Blanquet approach. In Whittaker RH (ed) Classification of plant communities. Dr. W. Junk, The Hague, pp 289–374Google Scholar
  48. Zar JH (1996) Biostatistical analysis. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2013

Authors and Affiliations

  • Maria Cristina Teixeira Braga Messias
    • 1
  • Mariangela Garcia Praça Leite
    • 2
  • João Augusto Alves Meira Neto
    • 3
  • Alessandra Rodrigues Kozovits
    • 1
  • Ricardo Tavares
    • 4
  1. 1.Departamento de Biodiversidade Evolução e Meio Ambiente (DEBIO)Universidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Departamento de GeologiaUniversidade Federal de Ouro PretoOuro PretoBrazil
  3. 3.Departmento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departamento de MatemáticaUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations