Folia Geobotanica

, Volume 48, Issue 2, pp 209–227 | Cite as

Composition and Diversity of Lawn Flora in Differently Managed Village Yards – A Case Study from Southwestern Hungary

  • Robert W. Pal
  • Sándor Csete
  • Zoltán Botta-Dukát
  • Gyula Pinke
Article

Abstract

Traditionally managed village yards have been disappearing from the Central-European countryside. Their lawn flora is likely to provide a unique habitat for many plants that are adapted to this environment. Composition of lawn flora was investigated in differently managed village yards (i.e., regularly mown and regularly trampled yards, poultry yards, paved yards) in southwestern Hungary. The main goal of the study was to detect the impacts of these different management regimes on the composition and diversity of the vegetation. In total, 240 1-m2 plots were sampled in 60 yards ranging from 80 m2 to 5,000 m2 in size. In the redundancy analysis, eight significant variables (degree of southness, slope, age, total size of yards; mowing, trampling and grazing regime; and the number of dogs) explained 16 % of the total variation in species data. The most diverse flora across yards was detected in the paved ones, and their stands also proved to be the most compositionally distinctive. In contrast, presence of domestic animals can contribute to local species loss as well as to a decrease in within-yard-type variability. These results highlight the importance of certain anthropogenic disturbances in maintaining high plant diversity, but also underline the crucial role of small-scale land management practices in rural environments.

Keywords

Anthropogenic disturbance Grazing Mowing Ruderal vegetation Trampling 
Plant nomenclature

Simon (2000)

Notes

Acknowledgements

This work was supported by the Carpathes Nature Conservation Foundation and TÁMOP-4.2.2/B-10/1-2010-0029. We are grateful to the yard owners for the use of their property. Thanks to Prof. Sándor Bartha (Hungarian Academy of Sciences) for his help in initiating the project, to Dr. Emily Rauschert (The Pennsylvania State University) and to Prof. Paul Alaback (University of Montana) for useful comments and linguistic improvement of the text.

References

  1. Ahrns C (2009) The ecological indication content of Central European village floras. Ecol Indicators 9:605–620CrossRefGoogle Scholar
  2. Balassa I (1997) Magyar néprajz nyolc kötetben 4. – ÉletmódAnyagi kultúra. 3. Akadémiai Kiadó, BudapestGoogle Scholar
  3. Balogh L, Dancza I, Király G (2004) A magyarországi neofitonok időszerű jegyzéke és besorolásuk inváziós szempontból (Actual list of neophytes in Hungary, and their classification according their invasiveness). In Mihály B, Botta-Dukát Z (eds) Biológiai inváziók MagyarországonÖzönnövények (Biological invasions in HungaryInvasive plants). A KvVM Természetvédelmi Hivatalának tanulmánykötetei 9, TermészetBÚVÁR Alapítvány Kiadó, Budapest, pp 61–92Google Scholar
  4. Beddows AR (1967) Biological Flora of the British Isles – Lolium perenne L. J Ecol 55:567–587CrossRefGoogle Scholar
  5. Bergmeier E (1983) Bemerkungen zum Rückgang der Dorfflora am Beispiel der Gemeinde Kalletal (Kr. Lippe). Nat Landschaft 58:330–332Google Scholar
  6. Bergmeier E (1990) Spontanvegetation Nordgriechischer Bergdörfer. Folia Geobot 25:27–61Google Scholar
  7. Bihari Z, Szalai S, Bozó L (2009) Natural environment – climate. In Kocsis K, Schweitzer F (eds) Hungary in maps. HAS Geographical Research Institute, Budapest, pp 45–50Google Scholar
  8. Borhidi A (1995) Social behavior types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot Hung 39:97–181Google Scholar
  9. Čarni A, Mucina L (1998) Vegetation of trampled soil dominated by C4 plants in Europe. J Veg Sci 9:45–56CrossRefGoogle Scholar
  10. Cilliers SS, Bredenkamp GJ (2000) Vegetation of road verges on an urbanisation gradient in Potchefstroom, South Africa. Landscape Urban Planning 46:217–239CrossRefGoogle Scholar
  11. Clark MS, Gage SH (1996) Effects of free-range chickens and geese on insect pests and weeds in an agro-ecosystems. Amer J Alternative Agric 11:39–47CrossRefGoogle Scholar
  12. Crawley MJ (1997) Plant ecology. Blackwell Science Ltd., OxfordGoogle Scholar
  13. Davies ZG, Fuller RA, Loram A, Irvine KN, Sims V, Gaston KJ (2009) A national scale inventory of resource provision for biodiversity within domestic gardens. Biol Conservation 142:761–771CrossRefGoogle Scholar
  14. Ellenberg H (1952) Meadows and pastures and their valuation with regard to site conditions. Ulmer Verlag, StuttgartGoogle Scholar
  15. Fagot M, De Cauwer B, Beeldens A, Boonen E, Bilcke R (2011) Weed flora in paved areas in relation to environment, pavement characteristics and weed control. Weed Res 51:650–660CrossRefGoogle Scholar
  16. Gotelli NJ, Colvell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  17. Grosse-Brauckmann G (1953) Über die Verbreitung ruderaler Dorfpflanzen innerhalb eines kleinen Gebietes. Mitt Florist-Soziol Arbeitsgem NF Stolzenau/Weser 4:5–10Google Scholar
  18. Grundy AC (2007) Weed occurrence on pavements in the UK: The results from a survey of Leamington Spa. Aspect Appl Biol 82:175–182Google Scholar
  19. Gutte P (1986) Dynamik der Ruderalvegetation in Siedlungsbereichen. Archiv Naturschutz Landschaftsf 26:99–104Google Scholar
  20. Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158CrossRefGoogle Scholar
  21. Hejný S (1973) Beitrag zur Charakteristik der Veränderung der Ruderalgesellschaften in Südböhmen. Acta Bot Akad Sci Hung 19:129–138Google Scholar
  22. Hammer O, Harper DAT, Ryan PD (2001) PAST, Palaeontological Statistics software package for education and data analysis. Palaeontol Electronica 4(1), art. 4Google Scholar
  23. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive database management system for vegetation data. J Veg Sci 12:589–591CrossRefGoogle Scholar
  24. Hermansen JE, Strudsholm K, Horsted K (2004) Integration of organic animal production into land use with special reference to swine and poultry. Livestock Prod Sci 90:11–26CrossRefGoogle Scholar
  25. Ilmarinen K, Mikola J (2009) Soil feedback does not explain mowing effects on vegetation structure in a semi-natural grassland. Acta Oecol 35:838–848CrossRefGoogle Scholar
  26. Klotz S, Briemle G (2002) BIOLFLORa data base on bio-ecological parameters of the flora of Germany. BfN-Schriftenvertrieb im Landwirtschaftsverlag, MünsterGoogle Scholar
  27. Kapitány Á, Kapitány G (2005) Globalisation, individualisation, modernisation, urbanisation and housing in Hungary. Társadalomkutatás 23:91–111CrossRefGoogle Scholar
  28. Király G (ed) (2009) New Hungarian herbal. The vascular plants of Hungary. Identification key. Aggteleki Nemzeti Park Igazgatóság, JósvafőGoogle Scholar
  29. Knörzer K-H (1987) Geschichte der synanthropen Vegetation von Köln. Kölner Jahrb Vor- u Frühgesch 20:271–388Google Scholar
  30. Kopecký K (1986) Der Rückgang von Malvetum neglectae und die Sukzession auf seinen Standorten. Preslia 58:63–74Google Scholar
  31. Kumar N, Singh B, Kaul VK, Ahuja PS (2005) Chemical and biological aspects of iridoid bearing plants of temperate region. Stud Nat Prod Chem 32:247–302CrossRefGoogle Scholar
  32. Legendre P, Gallagher EG (2001) Ecologically meaningfull transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  33. Loram A, Thomson K, Warren PH, Gaston KJ (2008) Urban domestic gardens (XII): The richness and composition of the flora in five UK cities. J Veg Sci 19:321–330CrossRefGoogle Scholar
  34. Loram A, Warren P, Thompson K, Gaston K (2011) Urban domestic gardens: The effects of human interventions on garden composition. Environm Managem 48:808–824.Google Scholar
  35. Lososová Z, Simonová D (2008) Changes during the 20th century in species composition of synanthropic vegetation in Moravia (Czech Republic). Preslia 80:291–305Google Scholar
  36. Lososová Z, Otýpková Z, Sádlo J, Láníková D (2009) Annual vegetation of arable land and ruderal habitats. In Chytrý M (ed) Vegetation of the Czech Republic2. Ruderal, weed, rock and scree vegetation. Academia, Praha, pp 73–202Google Scholar
  37. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Kühn I, Láníková D, Otýpková Z, Řehořek V (2011) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecol Biogeogr 21:545–555CrossRefGoogle Scholar
  38. Lubbe CS, Siebert SJ, Cilliers SS (2010) Political legacy of South Africa affects the plant diversity patterns of urban domestic gardens along a socio-economic gradient. Sci Res Essays 5:2900–2910Google Scholar
  39. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  40. Ouředníček M, Špačková P, Feřtrová M (2011) Changes in social milieu and quality of life in depopulating areas of the Czech Republic. Sociol Čas 47:777–803Google Scholar
  41. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-4. Available at: http://CRAN.R-project.org/package=vegan
  42. Pavlů V, Gaisler J, Hejcman M, Pavlů L (2006) Effect of different grazing system on dynamics of grassland weedy species. J Pl Dis Protect 20:377–383Google Scholar
  43. Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  44. Pinilla V, Ayuda MI, Sáez LA (2008) Rural depopulation and the migration turnaround in Mediterranean Western Europe: a case study of Aragon. J Rural Comm Developm 3:1–22Google Scholar
  45. Pinke Gy, Király G, Barina Z, Mesterházy A, Balogh L, Csiky J, Schmotzer A, Molnár VA, Pál RW (2011) Assessment of endangered synanthropic plants of Hungary with special attention to arable weeds. Pl Biosystems 145:426–435CrossRefGoogle Scholar
  46. Podani J (2001) SYN-TAX (2000) Computer programs for data analysis in ecology and systematics, User’s manual. Scientia Kiadó, BudapestGoogle Scholar
  47. Pykälä J (2005) Plant species responses to cattle grazing in mesic semi-natural grassland. Agric Ecosyst Environm 108:109–117CrossRefGoogle Scholar
  48. Pyšek A (1992) Bemerkungen zum gegenwärtigen Stand der westböhmischen Ruderalvegetation. Folia Mus Rer Natur Bohem Occid 36:1–18Google Scholar
  49. Pullin AS, Báldi A, Can OE, Dieterich M, Kati V, Livoreil B, Lövei G, Mihók B, Nevin O, Selva N, Sousa-Pinto I (2009) Conservation focus on Europe: Major conservation policy issues that need to be informed by Conservation Science. Conservation Biol 23:818–824CrossRefGoogle Scholar
  50. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org
  51. Sagar GR, Harper JL (1964) Biological flora of the British Isles – Plantago major L. J Ecol 52:189–205CrossRefGoogle Scholar
  52. Schippers P, Joenje W (2002) Modelling the effect of fertiliser, mowing, disturbance and width on the biodiversity of plant communities of field boundaries. Agric Ecosyst Environm 93:351–365CrossRefGoogle Scholar
  53. Siebert SF (2004) Traditional agriculture and the conservation of biological diversity in Crete, Greece. Int J Agric Sustainability 2:109–117CrossRefGoogle Scholar
  54. Šilc U (2010) Synanthropic vegetation: pattern of various disturbances on life history traits. Acta Bot Croatia 69:215–227Google Scholar
  55. Simon T (2000) A magyarországi edényes flóra határozója (Vascular flora of Hungary). Nemzeti Tankönyvkiadó, BudapestGoogle Scholar
  56. Smith RM, Thompson K, Hodgson JG, Warren PH, Gatson KJ (2006) Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biol Conservation 129:312–322CrossRefGoogle Scholar
  57. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sci 57:255–289CrossRefGoogle Scholar
  58. Thompson K, Austin KC, Smith RM, Warren PH, Angold PG, Gaston KJ (2003) Urban domestic gardens (I): Putting small-scale plant diversity in context. J Veg Sci 14:71–78CrossRefGoogle Scholar
  59. Thompson K, Hodgson JG, Smith RM, Warren PH, Gaston KJ (2004) Urban domestic gardens (III): Composition and diversity of lawn floras. J Veg Sci 15:373–378CrossRefGoogle Scholar
  60. Thompson K, Colsell S, Carpenter J, Smith RM, Warren PH, Gaston KJ (2005) Urban domestic gardens (VII): a preliminary survey of soil seed banks. Seed Sci Res 15:133–141CrossRefGoogle Scholar
  61. Török P, Matus G, Papp M, Tóthmérész B (2008) Secondary succession of overgrazed Pannonian sandy grasslands. Preslia 80:73–85Google Scholar
  62. Török P, Matus G, Papp M, Tóthmérész B (2009) Seed bank and vegetation development of sandy grasslands after goose breeding. Folia Geobot 44:31–46CrossRefGoogle Scholar
  63. Wattendorf P (1997) Influences of land-use on the structure of ruderal vegetation in the village of Lonja (Lonjsko Polje Nature Park/Croatia). Nat Croat 6:349–366Google Scholar
  64. Wichtl M (2002) Teedrogen und PhytopharmakaEin Handbuch für die Praxis auf wissenschaftlicher Grundlage. WVG, StuttgartGoogle Scholar
  65. Wittig R (1984) Sterben die Dorfpflanzen aus? Ergebnisse einer umfassenden Untersuchung der Dorfflora in 180 Dörfen Nordheim-Westfalens. Der Gemeinderat 27:36–37Google Scholar
  66. Wittig R (2002) Siedlungsvegetation. Ulmer Verlag, StuttgartGoogle Scholar
  67. Zerbe S, Choi, I, Kowarik I (2004) Characteristics and habitats of non-native plant species in the city of Chonju, southern Korea. Ecol Res 19:91–98CrossRefGoogle Scholar
  68. Zwaenepoel A, Roovers P, Hermy M (2006) Motor vehicles as vectors of plant species from road verges in a suburban environment. Basic Appl Ecol 7:83–93CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2012

Authors and Affiliations

  • Robert W. Pal
    • 1
  • Sándor Csete
    • 1
  • Zoltán Botta-Dukát
    • 2
  • Gyula Pinke
    • 3
  1. 1.Institute of BiologyUniversity of Pécs, Faculty of SciencesPécsHungary
  2. 2.Centre for Ecological ResearchMTAVácrátótHungary
  3. 3.Department of BotanyUniversity of West Hungary, Faculty of Agricultural and Food SciencesMosonmagyaróvárHungary

Personalised recommendations