Folia Geobotanica

, Volume 48, Issue 2, pp 137–162 | Cite as

Application of the Ancient Forest Concept to Potential Natural Vegetation Mapping in Flanders, A Strongly Altered Landscape in Northern Belgium

  • Luc De Keersmaeker
  • Nele Rogiers
  • Kris Vandekerkhove
  • Bruno De Vos
  • Bart Roelandt
  • Johnny Cornelis
  • An De Schrijver
  • Thierry Onkelinx
  • Arno Thomaes
  • Martin Hermy
  • Kris Verheyen
Article

Abstract

Construction of potential natural vegetation (PNV) poses particular challenges in landscapes heavily altered by human activity and must be based on transparent, repeatable methods. We integrated the concept of ancient forest (AF) and ancient forest species (AFS) into a four-step procedure of PNV mapping: 1) classification of forest vegetation relevés; 2) selection of those vegetation types that can serve as PNV units, based on AF and AFS; 3) merging of selected vegetation types into five PNV units that can be predicted from a digital morphogenetic soil map; 4) mapping of three additional PNV units based on additional environmental data. The second step, concerning the selection of reference forest vegetation, is of particular interest for PNV construction in Flanders (northern Belgium), where forest cover has been subject to temporal disruption and spatial fragmentation. Among the variety of extant forest recovery states, we chose as PNV units those vegetation types for which a high proportion of relevés had been located in AF and that contained many AFS. As the frequency of AFS depends on site conditions, we only compared and selected vegetation types that are found on similar sites according to average Ellenberg indicator values. While succession is irrelevant for the definition of PNV, colonization rates of AFS can be used to estimate the time required for PNV to be restored in a site.

Keywords

Ellenberg indicator values Land-use history Naturalness Vegetation mapping 

Supplementary material

12224_2012_9135_MOESM1_ESM.pdf (199 kb)
ESM 1(PDF 198 kb)

References

  1. AGIV (2006) Agency for Geographical Information of Flanders. Distribution center for GIS thematic layers, Ghent. Available at: http://www.agiv.be
  2. Baeten L, Bauwens B, De Schrijver A, De Keersmaeker L, Van Calster H, Vandekerkhove K, Roelandt B, Beeckman H, Verheyen K (2009a) Herb layer changes (1954–2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl Veg Sci 12:187–197CrossRefGoogle Scholar
  3. Baeten L, Hermy M, Verheyen K (2009b) Environmental limitation contributes to the differential colonization capacity of two forest herbs. J Veg Sci 20:209–223CrossRefGoogle Scholar
  4. Baeten L, Hermy M, Van Daele S, Verheyen K (2010) Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J Ecol 98:1447–1453CrossRefGoogle Scholar
  5. Becker M (1979) Influence du traitement sylvicole sur la flore forestiere: Cas de la futaie et du taillis-sous-futaie. Vegetatio 40:155–161Google Scholar
  6. Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Raus Th, Schlüter H, Weber H (2003) Map of the Natural Vegetation of Europe (Scale 1 : 2 500 000). Landwirtschaftsverlag, MünsterGoogle Scholar
  7. Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient-recent forest ecotones in central Belgium. J Ecol 87:628–638CrossRefGoogle Scholar
  8. Brahy V, Deckers J, Delvaux B (2000) Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol-Cambisol on loess under deciduous forest in Belgium. Eur J Soil Sci 51:1–13CrossRefGoogle Scholar
  9. Brunet J, von Oheimb G (1998) Migration of vascular plants to secondary woodlands in southern Sweden. J Ecol 86:429–438CrossRefGoogle Scholar
  10. Brzeziecki B, Kienast F, Wildi O (1993) A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4:499–508CrossRefGoogle Scholar
  11. Brzeziecki B, Kienast F, Wildi O (1995) Modelling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. J Veg Sci 6:257–268CrossRefGoogle Scholar
  12. Carrión JS (2010) The concepts of potential natural vegetation (PNV) and other abstractions (trying to pick up fish with wet hands). J Biogeogr 37:2213–2215CrossRefGoogle Scholar
  13. Chiarucci A, Araújo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1172–1178CrossRefGoogle Scholar
  14. Cornelis J, Hermy M, Roelandt B, De Keersmaeker L, Vandekerkhove K (2009) Bosplantengemeenschappen in Vlaanderen, een typologie van bossen gebaseerd op de kruidlaag (Herbaceous forest vegetation communities of Flanders). Agentschap voor Natuur en Bos en Instituut voor Natuur- en Bosonderzoek, BrusselsGoogle Scholar
  15. Cross JR (1998) An outline and map of the Potential Natural Vegetation of Ireland. Appl Veg Sci 1:241–252CrossRefGoogle Scholar
  16. Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, De Foucault B, Delelis-Dusollier A, Bardat F (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079CrossRefGoogle Scholar
  17. De Keersmaeker L, Rogiers N, Lauriks R, De Vos B (2001) Ecosysteemvisie bos Vlaanderen: ruimtelijke uitwerking van de natuurlijke bostypes op basis van bodemgroeperingseenheden en historische boskaarten (Ecosystem vision for the forest of Flanders based on PNVs and historical forest cover). Instituut voor Bosbouw en Wildbeheer, GeraardsbergenGoogle Scholar
  18. De Keersmaeker L, Martens L, Verheyen K, Hermy M, De Schrijver A, Lust N (2004) Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen Forest (Belgium). Forest Ecol Managem 188:291–304CrossRefGoogle Scholar
  19. De Keersmaeker L, Vandekerkhove K, Verstraeten A, Baeten L, Verschelde P, Thomaes A, Hermy M, Verheyen K (2011) Clear-felling effects on colonization rates of shadetolerant forest herbs into a post-agricultural forest adjacent to ancient forest. Appl Veg Sci 14:75–83CrossRefGoogle Scholar
  20. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology – a review. Basic Appl Ecol 4: 493–506CrossRefGoogle Scholar
  21. Döring-Mederake U (1990) Alnion Forests in Lower Saxony (FRG), their ecological requirements, classification and position within Carici Elongatae-Alnetum of Northern Central Europe. Vegetatio 89:107–119CrossRefGoogle Scholar
  22. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  23. Dupouey JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984CrossRefGoogle Scholar
  24. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  25. Falkengren-Grerup U, Tyler G (1993) Experimental evidence for the relative sensitivity of deciduous forest plants to high forest acidity. Forest Ecol Managem 60:311–326Google Scholar
  26. Farris E, Filibeck G, Marignani M, Rosati L (2010) The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión and Fernández (2009). J Biogeogr 37:2211–2213CrossRefGoogle Scholar
  27. Ferrier S, Guisan A (2006) Spatial modeling of biodiversity at the community level. J Appl Ecol 43:393–404CrossRefGoogle Scholar
  28. Flemish Government, section Water and section Hydraulics Research (2001–2004) Digital terrain model of Flanders. Flemish Geographical Information Agency (FGIA), GhentGoogle Scholar
  29. Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Frontier Ecol Environm 3:243–250CrossRefGoogle Scholar
  30. Härdtle W (1995) On the theoretical concept of the Potential Natural Vegetation and proposals for an up-to-date modification. Folia Geobot Phytotax 30:263–276CrossRefGoogle Scholar
  31. Hermy M (1985) Ecologie en fytosociologie van oude en jonge bossen in Binnen-Vlaanderen (Ecological and phytosociological study of ancient and recent forests in Flanders). PhD Thesis, Ghent University, GhentGoogle Scholar
  32. Hermy M, Stieperaere H (1981) An indirect gradient analysis of the ecological relationships between ancient and recent riverine woodlands to the south of Bruges (Flanders, Belgium). Vegetatio 44:43–49CrossRefGoogle Scholar
  33. Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conservation 91:9–22CrossRefGoogle Scholar
  34. Hill MO (1979) TWINSPANa FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, New YorkGoogle Scholar
  35. IUSS Working Group WRB (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World soil resources report 103, FAO, RomeGoogle Scholar
  36. Jensen JR (1996) Introductory digital image processing: A remote sensing perspective. Ed. 2. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  37. Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358CrossRefGoogle Scholar
  38. Kohn DD, Hulmea PE, Hollingsworth PM, Butler A (2009) Are native bluebells (Hyacinthoides non-scripta) at risk from alien congenerics? Evidence from distributions and co-occurrence in Scotland. Biol Conservation 142:61–74CrossRefGoogle Scholar
  39. Kopecký K, Hejný S (1974) A new approach to the classification of anthropogenic plant communities. Vegetatio 29:17–20CrossRefGoogle Scholar
  40. Kowarik I (1987) Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemäßen Modifikation. Tuexenia 7:53–67Google Scholar
  41. Leuschner C (1997) Das Konzept der potentiellen natürlichen Vegetation (PNV): Schwachstellen und Entwicklungsperspektiven. Flora 192:379–391Google Scholar
  42. Liu HM, Wang LX, Yang J, Nakagoshi N, Liang CZ, Wang W, Lv YM (2009) Predictive modeling of the potential natural vegetation pattern in northeast China. Ecol Res 24:1313–1321CrossRefGoogle Scholar
  43. Loidi J, del Arco M, Pérez de Paz PL, Asensi A, Díez Garretas B, Costa M, Díaz González T, Fernández-González F, Izco J, Penas A, Rivas-Martínez S, Sánchez-Mata1 D (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37:2209–2211CrossRefGoogle Scholar
  44. Matlack GR (1994) Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75:1491–1502CrossRefGoogle Scholar
  45. Matlack GR (2009) Long-term changes in soils of second-growth forest following abandonment from agriculture. J Biogeogr 36:2066–2075CrossRefGoogle Scholar
  46. Moravec J (1998) Reconstructed natural versus potential natural vegetation in vegetation mapping. Appl Veg Sci 1:173–176CrossRefGoogle Scholar
  47. Mueller-Dombois D, Ellenberg H (2002) Aims and methods of vegetation ecology. The Blackburn Press, Caldwell, New JerseyGoogle Scholar
  48. Muys B, Granval P (1997) Earthworms as bio-indicators of forest site quality. Soil Biol Biochem 29:323–328CrossRefGoogle Scholar
  49. Neirynck J, Mirtcheva S, Sioen G, Lust N (2000) Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecol Managem 133:275–286CrossRefGoogle Scholar
  50. Noirfalise A (1984) Forêts et stations forestières en Belgique. Les Presses Agronomiques de Gembloux, GemblouxGoogle Scholar
  51. Peterken GF (1974) A method for assessing woodland flora for conservation using indicator species. Biol Conservation 6:239–245CrossRefGoogle Scholar
  52. Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, CambridgeGoogle Scholar
  53. Plue J, Hermy M, Verheyen K, Thuillier P, Saguez R, Decocq G (2008) Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landscape Ecol 23:673–688CrossRefGoogle Scholar
  54. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org/
  55. Rackham O (1980) Ancient woodland: its history, vegetation and uses in England. Arnold, LondonGoogle Scholar
  56. Ricotta C, Carranza ML, Avena G, Blasi C (2002) Are potential natural vegetation maps a meaningful alternative to neutral landscape models? Appl Veg Sci 5:271–275CrossRefGoogle Scholar
  57. Rogister JE (1978) De groeiplaatskwaliteiten voor Es (Fraxinus excelsior) en Beuk (Fagus sylvatica) in funktie van de berekende ekologische gemiddelden van bodemaciditeit, -vochtigheid en -nitrifikatie (with english summary) (Calculation of site conditions for ash and beech, based on ecograms with indicator values). Werken, Reeks A 21, 28, Proefstation van Waters en Bossen, GroenendaalGoogle Scholar
  58. Somodi I, Molnár Z, Ewald J (2012) Towards a more transparent use of the potential natural vegetation concept – an answer to Chiaruccu et al. J Veg Sci 23:590–595CrossRefGoogle Scholar
  59. Stumpel AHP, Kalkhoven JTR (1978) A vegetation map of the Netherlands, based on the relationship between ecotopes and types of potential natural vegetation. Vegetatio 37:163–173CrossRefGoogle Scholar
  60. Tack G, van den Bremt P, Hermy M (1993) Bossen van Vlaanderen: een historische ecologie (Forests of Flanders: an historical-ecological study). Davidsfonds, LeuvenGoogle Scholar
  61. Thomaes A, De Keersmaeker L, De Schrijver A, Vandekerkhove K, Verschelde P, Verheyen K (2011) Can tree species choice influence recruitment of ancient forest species in post-agricultural forest? Pl Ecol 212: 573–584CrossRefGoogle Scholar
  62. Tichý L (1999) Predictive modeling of the potential natural vegetation pattern in the Podyjí National Park, Czech Republic. Folia Geobot 34:243–252CrossRefGoogle Scholar
  63. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1993) Flora Europaea. Vols. 1–5. Cambridge University Press, CambridgeGoogle Scholar
  64. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol (Stolzenau) 13:5–42Google Scholar
  65. Vaca RA, Golicher DJ, Cayuela L (2011) Using climatically based random forests to downscale coarse-grained potential natural vegetation maps in tropical Mexico. Appl Veg Sci 14:388–401CrossRefGoogle Scholar
  66. Van Braeckel A, Piesschaert F, Van den Bergh E (2006) Historische analyse van de Zeeschelde en haar getijgebonden zijrivieren. 19e eeuw tot heden (An historical analysis of the Scheldt and its tributaries in the tidal area). Instituut voor Natuur- en Bosonderzoek, BrusselGoogle Scholar
  67. Van Calster H, Baeten L, Verheyen K, De Keersmaeker L, Dekeyser S, Rogister JE, Hermy M (2008) Diverging effects of different overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecol Managem 256:519–528CrossRefGoogle Scholar
  68. Van der Veken S, Rogister J, Verheyen K, Hermy M, Nathan R (2007) Over the (range) edge: A 45-year transplant experiment with the perennial forest herb Hyacinthoides non-scripta. J Ecol 95: 343–351CrossRefGoogle Scholar
  69. Van Landuyt W, Hoste I, Vanhecke L, Van Den Bremt P, Vercruysse W, de Beer D (2006) Atlas van de flora van Vlaanderen en het Brussels Gewest (Atlas of the flora of Flanders and Brussels). Flo.Wer, Research Institute for Nature and National Botanic Garden of Belgium, BrusselsGoogle Scholar
  70. Verheyen K, Hermy M (2001) An integrated analysis of the spatio-temporal colonization patterns of forest plant species. J Veg Sci 12:567–578CrossRefGoogle Scholar
  71. Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278–1990) of a mixed hardwood forest in Western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128CrossRefGoogle Scholar
  72. Verheyen K, Fastenaekels I, Vellend M, De Keersmaeker L, Hermy M (2006) Landscape factors and regional differences in recovery rates of herb layer richness in Flanders (Belgium). Landscape Ecol 21:1109–1118CrossRefGoogle Scholar
  73. Wang H, Ni J, Prentice IC (2011) Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environm Change 11:715–727CrossRefGoogle Scholar
  74. Wilson BR, Moffat AJ, Nortcliff S (1997) The nature of three ancient woodland soils in southern England. J Biogeogr 24:633–646CrossRefGoogle Scholar
  75. Wolf RJAM, Vrielinck JG, De Waal RL (1997) Riverine woodlands in the Netherlands. Global Ecol Biogeogr 6:287–295CrossRefGoogle Scholar
  76. Wood SN (2006) Generalized additive models: An introduction with R. Chapman and Hall/CRC Press, Boca RatonGoogle Scholar
  77. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J Roy Stat Soc B 73:3–36CrossRefGoogle Scholar
  78. Wulf M (1997) Plant species as indicators of ancient woodland in Northwestern Germany. J Veg Sci 8:635–642CrossRefGoogle Scholar
  79. Zampieri M, Lionello P (2010) Simple statistical approach for computing land cover types and potential natural vegetation. Climate Res 41: 205–220CrossRefGoogle Scholar
  80. Zerbe S (1998) Potential natural vegetation: validity and applicability in landscape planning and nature conservation. Appl Veg Sci 1:165–172CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2012

Authors and Affiliations

  • Luc De Keersmaeker
    • 1
  • Nele Rogiers
    • 2
  • Kris Vandekerkhove
    • 1
  • Bruno De Vos
    • 1
  • Bart Roelandt
    • 3
  • Johnny Cornelis
    • 3
  • An De Schrijver
    • 4
  • Thierry Onkelinx
    • 1
  • Arno Thomaes
    • 1
  • Martin Hermy
    • 5
  • Kris Verheyen
    • 4
  1. 1.Research Institute for Nature and ForestGeraardsbergenBelgium
  2. 2.Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK)Bundesamt für Umwelt (BAFU) Abteilung WaldBernSwitzerland
  3. 3.Nature and Forest AgencyBrusselBelgium
  4. 4.Laboratory of ForestryGhent UniversityMelleBelgium
  5. 5.Department of Earth & Environmental SciencesKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations