Folia Geobotanica

, Volume 47, Issue 4, pp 403–419 | Cite as

Diversity of Rich Fen Vegetation and Related Plant Specialists in Mountain Refugia of the Iberian Peninsula

  • Borja Jiménez-Alfaro
  • Eduardo Fernández-Pascual
  • Tomás E. Díaz González
  • Aaron Pérez-Haase
  • Josep M. Ninot


In temperate mountains, fens have been reported as relict habitats subject to geographical fragmentation and broad climatic gradients, but few studies have analyzed the influence of these factors on plant diversity. Here we investigate the effect of isolation on the vegetation diversity of rich fens (Caricion davallianae) in the mountains of the Iberian Peninsula, the distribution limit of these habitats in south-western Europe. We used plot-based vegetation data from the Pyrenees and the Cantabrian mountain range to evaluate their regional species-pool, occurrence of specialists, beta-diversity and the effect of geo-climatic variables on their species-richness and species-composition. We found a lower ratio of rare specialists in the Pyrenees than in the Cantabrian range, but similar estimates in the species pools, total species-richness per plot and beta-diversity. The isolation of the two mountain regions resulted in different species assemblages best predicted by summer precipitation and bedrock types, showing region-based differences in the response of vegetation and plant specialists to the environment. The tighter correlation between local climate and diversity estimates in the Cantabrian range suggests relict character of rich fens in that region, where climatic conditions have restricted local distribution of formerly more widely distributed specialists. Although there is no relevant evidence of vegetation impoverishment in that region, historical isolation has probably resulted in the existence of fragmentary plant communities. We conclude that fen vegetation may experience long-time persistence in climatically sub-optimal mountain refugia, but related plant specialists may be sensitive to climatic changes and subject to the extinction of local populations.


Alpha-diversity Beta-diversity Cantabrian range Diversity Fen Paleorefugia Pyrenees Vegetation composition Wetlands 



We thank D. Gómez and G. Corriol for providing unpublished data and complete literature about Pyrenean rich fens. We also thank the reviewers and associate editor for the comments and suggestions that permitted improvements to the manuscript. BJA was grant by the European Social Fund through the Spanish Ministry of Science (PTA2007-0726-I). EFP had a PhD grant from the Government of the Principality of Asturias (Plan de Ciencia, Tecnología e Innovación del Principado de Asturias).


  1. Amon JP, Thompson CA, Carpenter QJ, Miner J (2002) Temperate zone fens of the glaciated Midwestern USA. Wetlands 22:301–317CrossRefGoogle Scholar
  2. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693PubMedCrossRefGoogle Scholar
  3. Bedford B, Godwin K (2003) Fens of the United States: Distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629CrossRefGoogle Scholar
  4. Benito Alonso JL (2003) Las comunidades con Carex bicolor All. del Pirineo. Actas del VI Coloquio de Botánica Pirenaico-Cantábrica. Acta Bot Barcinon 49:229–243Google Scholar
  5. Bergamini A, Peintinger M, Fakheran S, Moradi H, Schmid B, Joshi J (2009) Loss of habitat specialists despite conservation management in fen remnants 1995–2006. Perspect Pl Ecol Evol Syst 11:65–79CrossRefGoogle Scholar
  6. Braun-Blanquet J (1932) Plant sociology, the study of plant communities. McGraw-Hill, New York, London (translated and edited by Fuller GD, Conarn HS)Google Scholar
  7. Braun-Blanquet J (1948) La végétation alpine des Pyrénées Orientales. Monografías de la Estación de Estudios Pirenaicos y del Instituto Español de Edafología, Ecología y Fisiología Vegetal, BarcelonaGoogle Scholar
  8. Casanovas L (1991) Estudis sobre l’estructura i l’ecologia de les molleres pirinenques. Thesis doctoral, Facultad de Biología, Universidad de Barcelona, BarcelonaGoogle Scholar
  9. Casas C, Brugués M, Cros RM, Sérgio C (2006) Handbook of mosses of the Iberian Peninsula and the Balearic Islands. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  10. Castroviejo S (1986–2011) Flora Ibérica, plantas vasculares de la Península Ibérica e Islas Baleares. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  11. Chytrý M (2001) Phytosociological data give biased estimates of species richness. J Veg Sci 12:439–444CrossRefGoogle Scholar
  12. Cires E, Samain M-S, Goetghebeur P, Fernández Prieto JA (2011) Genetic structure in peripheral Western European populations of the endangered species Cochlearia pyrenaica (Brassicaceae). Pl Syst Evol 297:75–85CrossRefGoogle Scholar
  13. Colwell R, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727CrossRefGoogle Scholar
  14. Csergö A-M, Schönswetter P, Mara G, Deák T, Boşcaiu N and Höhn M. (2009) Genetic structure of peripheral, island-like populations: a case study of Saponaria bellidifolia Sm. (Caryophyllaceae) from the Southeastern Carpathians. Pl Syst Evol 278:33–41CrossRefGoogle Scholar
  15. Dierssen K, Dierssen B (1985) Corresponding Caricion bicolori-atrofuscae communities in western Greenland, northern Europe and the central European mountains. Vegetatio 59:151–157CrossRefGoogle Scholar
  16. Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, CambridgeGoogle Scholar
  17. Felton A (2009) Climate change, conservation and management: an assessment of the 2009 peer-reviewed scientific journal literature. Biodivers & Conservation 18:2243–2253CrossRefGoogle Scholar
  18. Fillat F (1984) Estacionalidad de las precipitaciones en España: Clasificación de zonas homogéneas. In Blanco de Pablos A (ed) Avances sobre la investigación en Bioclimatología. Universidad de Salamanca, SalamancaGoogle Scholar
  19. Flinn KM, Lechowicz MJ, Waterway MJ (2008) Plant species diversity and composition of wetlands within an upland forest. Amer J Bot 95:1216–1224CrossRefGoogle Scholar
  20. Font X, Rodríguez-Rojo MP, Acedo C, Biurrun I, Fernández-González F, Lence C, Loidi J, Ninot JM (2010) SIVIM: an on-line database of Iberian and Macaronesian vegetation. Waldökol Landschaftsf Naturschutz 9:15–22Google Scholar
  21. Gilbrich WH (2000) International hydrogeological map of Europe. Waterway 19:1–11Google Scholar
  22. Grootjans AP, Adema EB, Bleuten W, Joosten H, Madaras M, Janáková M (2006) Hydrological landscape settings of base-rich fen mires and fen meadows: an overview. Appl Veg Sci 9:175–184CrossRefGoogle Scholar
  23. Habel JC, Assmann T, Schmitt T (2009) Relict species: from past to future. In Habel JC, Assmann T (eds) Relict species, phylogeography and conservation biology. Springer Verlag, Heidelberg, pp 1–8Google Scholar
  24. Hájek M, Horsák M, Hájková P, Dítě D (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Pl Ecol Evol Syst 8:97–114CrossRefGoogle Scholar
  25. Hájek M, Hájková P, Sopotlieva D, Apostolova I, Velev N (2008) The Balkan wet grassland vegetation: a prerequisite to better understanding of European habitat diversity. Pl Ecol 195:197–213CrossRefGoogle Scholar
  26. Hájek M, Hájková P, Apostolova I, Horsák M, Plášek V, Shaw B, Lazarova M (2009). Disjunct occurrences of plant species in the refugial mires in Bulgaria. Folia Geobot 44:365–386CrossRefGoogle Scholar
  27. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755CrossRefGoogle Scholar
  28. Hájková P, Hájek M, Apostolova I (2006) Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Pl Ecol 184:111–130CrossRefGoogle Scholar
  29. Hájková P, Hájek M, Apostolova I, Zelený D, Dítě D (2008) Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. J Biogeogr 35:282–294Google Scholar
  30. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  31. Hooftman DA, Billeter RC, Schmid B, Diemer M (2004) Genetic effects of habitat fragmentation on common species of swiss fen meadows. Conservation Biol 18:1043–1051CrossRefGoogle Scholar
  32. Horsák M, Hájek M, Dítě D, Tichý L (2007) Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J Molluscan Stud 73:53–60CrossRefGoogle Scholar
  33. Jiménez-Alfaro B, Díaz González TE, Fernández Pascual E (2011) Grupos de vegetación y hábitats de turberas neutro-basófilas pirenaico-cantábricas. Acta Bot Barcinon 53:47–60Google Scholar
  34. Johnson JB, Steingraeber DA (2003) The vegetation and ecological gradients of calcareous mires in the South Park valley, Colorado. Canad J Bot 81:201–219CrossRefGoogle Scholar
  35. Kramp K, Huck S, Niketić M, Tomović G, Schmitt T (2009) Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant species Polygonatum verticillatum (Convallariaceae). Pl Biol 11:392–404CrossRefGoogle Scholar
  36. Lájer K (2007) Statistical tests as inappropriate tools for data analysis performed on non-random samples of plants community. Folia Geobot 42:115–122CrossRefGoogle Scholar
  37. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  38. Lepš J, Šmilauer P (2007) Subjectively sampled vegetation data: Don’t throw out the baby with the bath water. Folia Geobot 42:169–178CrossRefGoogle Scholar
  39. Lobo J, Castro I, Moreno JC (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol J Linn Soc 73:233–253CrossRefGoogle Scholar
  40. Lomolino MV, Riddle BR, Brown JH (2006) Biogeography. Sinauer, Sunderland, MAGoogle Scholar
  41. McClellan MH, Brock T, Baichtal JF (2003) Calcareous fens in Southeast Alaska. Research Note PNW-RN-536. US Department of Agriculture, Forest Service, Pacific Northwest Research Station. Portland, ORGoogle Scholar
  42. Michalcová D, Lvončík S, Chytrý M, Hájek O (2011) Bias in vegetation databases? A comparison of stratified-random and preferential sampling. J Veg Sci 22:1654–1103CrossRefGoogle Scholar
  43. Nagy L, Grabherr G, Körner Ch, Thompson DBA (2003) Alpine biodiversity in Europe. Ecological Studies, Springer Verlag, BerlinCrossRefGoogle Scholar
  44. Nava HS, Fernández Casado MA (2004). Salix hastata subsp. picoeuropeana. In Bañares A, Blanca G, Moreno JC, Ortiz S (eds) Atlas y libro rojo de la flora vascular amenazada de España. Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid, p 907Google Scholar
  45. Nekola JC (1999) Palaorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80:2459–2473CrossRefGoogle Scholar
  46. Nekola JC (2004) Vascular plant compositional gradients within and between Iowa fens. J Veg Sci 15:771–780Google Scholar
  47. Økland RH (1990) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. III. Diversity and habitat niche relationships. Nordic J Bot 10:191–220CrossRefGoogle Scholar
  48. Otýpková Z, Chytrý M (2006) Effects of plot size on the ordination of vegetation samples. J Veg Sci 17:465–472CrossRefGoogle Scholar
  49. Pärtel M, Moora M, Zobel M (2001) Variation in species richness within and between calcareous (alvar) grassland stands: the role of core and satellite species. Pl Ecol 157:205–213CrossRefGoogle Scholar
  50. Peintinger M, Bergamini A, Schmid B (2003) Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. Basic Appl Ecol 4:385–394CrossRefGoogle Scholar
  51. Peredo EL, Revilla MA, Jiménez-Alfaro B, Bueno A, Fernández Prieto JA, Abbott R (2009) Historical biogeography of a disjuntly distributed, Spanish alpine plant, Senecio boisseri (Asteraceae). Taxon 58:883–892Google Scholar
  52. Prentice IC (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  53. Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España (Memoria del mapa de vegetación potencial de España, parte I). Itinera Geobot 17:1–436Google Scholar
  54. Rivas-Martínez S, Díaz TE, Fernández Prieto JA, Loidi J, Penas A (1984) La vegetación de la alta montaña cantábrica. Los Picos de Europa. Ediciones Leonesas, LeónGoogle Scholar
  55. Rivas-Martínez S, Díaz González TE, Fernández González F, Izco J, Loidi J, Lousa P, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobot 15:5–922Google Scholar
  56. Robinson S, Bueno Sánchez A, Jiménez-Alfaro B (2008) Juncus balticus subsp. cantabricus. In Bañares A, Blanca G, Moreno JC, Ortiz S (eds) Atlas y libro rojo de la flora vascular amenazada de España. Dirección General para la Biodiversidad-Sociedad Española de Biología de la Conservación de Plantas, Madrid, pp 72–73Google Scholar
  57. Roekaerts M (2002) The biogeographical regions map of Europe. European Environment Agency, CopenhagenGoogle Scholar
  58. Roleček J, Chytrý M, Hájek M, Lvončík S, Tichý L (2007) Sampling design in large-scale vegetation studies: do not sacrifice ecological thinking to statistical purism! Folia Geobot 42:199–208CrossRefGoogle Scholar
  59. Sekulová L, Hájek M, Hájková P, Mikulášková E, Rozbrojová Z (2011) Alpine wetlands in the West Carpathians: vegetation survey and vegetation-environment relationships. Preslia 83:1–24Google Scholar
  60. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453CrossRefGoogle Scholar
  61. Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818Google Scholar
  62. Tiner RW (2003) Geographically isolated wetlands of the United States. Wetlands 23:494–516CrossRefGoogle Scholar
  63. Topić J, Stančić Z (2006) Extinction of Fen and Bog Plants and their Habitats in Croatia. Biodivers & Conservation 15:3371–3381CrossRefGoogle Scholar
  64. van Diggelen R, Middleton BA, Bakker JP, Grootjans A, Wassen M (2006) Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Appl Veg Sci 9:157–162CrossRefGoogle Scholar
  65. Vargas P (2003) Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52:463–476CrossRefGoogle Scholar
  66. Virolainen M, Suomi, T, Suhonen J, Kuitunen M (1998) Conservation of vascular plants in single large and several small mires: species richness, rarity and taxonomic diversity. J Appl Ecol 35:700–707CrossRefGoogle Scholar
  67. Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of North-West European Mires. J Ecol 88:187–203CrossRefGoogle Scholar
  68. Zimmermann M, Vischer-Leopold M, Ellwanger G, Ssymank S, Schröder E (2009) The EC habitats directive and the German Natura 2000 Network of Protected Areas as tool for implementing the conservation of relict species. In Habel JC, Assmann T (eds) Relict species, phylogeography and conservation biology. Springer, Heidelberg, pp 323–340Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2012

Authors and Affiliations

  • Borja Jiménez-Alfaro
    • 1
  • Eduardo Fernández-Pascual
    • 1
  • Tomás E. Díaz González
    • 1
  • Aaron Pérez-Haase
    • 2
  • Josep M. Ninot
    • 2
  1. 1.Jardín Botánico AtlánticoUniversidad de OviedoGijónSpain
  2. 2.Departamento de Biología VegetalUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations