Folia Geobotanica

, Volume 46, Issue 1, pp 1–16 | Cite as

Historical Land Use Explains Current Distribution of Calcareous Grassland Species

  • Jonathan Heubes
  • Vroni Retzer
  • Sebastian Schmidtlein
  • Carl Beierkuhnlein


In this study we analyzed if characteristic calcareous grassland species persist in forest habitats after land use change. Furthermore, we investigated whether the current distribution of such species is related to historical land use of the mid-19th century. Current distributions of nine calcareous grassland species were recorded in a region of Upper Franconia, Germany. Historical (up to 1850) and current land-use data were analyzed using historical maps and aerial photographs. To study the effects of historical land use in current species distributions, we used Generalized Estimating Equations (GEE) and ANOVA, accounting for spatial autocorrelation. Variance partitioning was applied to separate the influence of historical versus current land use. On average 26% of the recorded grassland species occurrences are located in sub-optimal forest habitats. Grassland populations are likely to persist in forest for at least 50 years. Even though current land use explains a higher proportion of the variation in species distribution than historical land use alone, model fit could be significantly improved (P < 0.001) considering the historical component. We conclude that consideration of historical land use is essential to understand the current grassland species distributions and may be of general importance for perennial species of temperate grasslands. In addition, historical legacy has far-reaching implications for conservation biology in terms of realistic assessments of species threat status in present landscapes.


Calcareous grassland species GEE Historical land use Remnant plant populations Spatial autocorrelation 



The present study was financially supported by the research funding programme “LOEWE- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts. We thank the government of Upper Franconia (Oberfranken) for the permission to access the nature conservation areas for field work as well as Dr. Burkhard Neuwirth from the University of Bonn (Department of Geography) to conduct dendrochronological analysis. We are grateful to Ingolf Kühn for valuable comments on the results as well as Gudrun Carl for assistance with the GEE code. All conducted experiments comply with the current laws of Germany.

Supplementary material

12224_2010_9090_MOESM1_ESM.doc (820 kb)
Electronic Supplementary Material 1 Spatial distribution of nine characteristic calcareous grassland species in a segment of Upper Franconia, Germany: aAnthyllis vulneraria, bCentaurea scabiosa, cCirsium acaule, dDianthus carthusianorum, eJuniperus communis, fOnonis repens, gSanguisorba minor, hScabiosa columbaria, iThymus pulegioides (DOC 820 kb)
12224_2010_9090_MOESM2_ESM.doc (230 kb)
Electronic Supplementary Material 2 Regression coefficients derived from generalized estimating equations (GEE). Calculation is based on a 70 × 70 m grid. The response is given by the presence/absence of calcareous grassland species while current (2005) and historical (1850) land use categories serve as predictors (binary coded). The first row of each species (2005) shows results of current land use categories, while the second row (1850) relates to historical land use categories. Positive signs (+) indicate species abundance on the respective land use categories, considering current land use. Negative signs (−) indicate species absence. Significance levels show the strength of the relation. The lower the significance level (* – P < 0.05, ** – P < 0.01, *** – P < 0.001), the higher is the probability of finding a species in the corresponding land use type. Considering the results of 1850, species occurrence in relation to historical land use types are displayed (DOC 230 kb)


  1. Aavik T, Jogar U, Liira J, Tulva I, Zobel M (2008) Plant diversity in a calcareous wooded meadow − The significance of management continuity. J Veg Sci 19:475–484CrossRefGoogle Scholar
  2. Bellemare J, Motzkin G, Foster DR (2002) Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–1420CrossRefGoogle Scholar
  3. Bender O, Boehmer HJ, Jens D, Schumacher KP (2005) Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landscape Ecol 20:149–163CrossRefGoogle Scholar
  4. Böhmer H J, Bender O (2000) Die Entwicklung der Wacholderheiden auf der nördlichen Frankenalb. In Becker H (ed) Beiträge zur Landeskunde Oberfrankens. Festschrift zum 65. Geburtstag von Bezirkstagspräsident Edgar Sitzmann. Selbstverlag Fachbereich Geographie an der Universität Bamberg, Bamberg, pp 169–189Google Scholar
  5. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  6. Bossuyt B, Hermy M (2001) Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24:225–238CrossRefGoogle Scholar
  7. Brys R, Jacquemyn H, Endels P, De Blust G, Hermy M (2005) Effect of habitat deterioration on population dynamics and extinction risks in a previously common perennial. Conservation Biol 19:1633–1643CrossRefGoogle Scholar
  8. Carey VJ (2006) BR gee: Generalized Estimation Equation solver. R package version 4.13–11. Ported to R by Thomas Lumley (versions 3.13, 4.4, version 4.13). Available at:
  9. Carl G, Kühn I (2007) Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modelling 207:59–170CrossRefGoogle Scholar
  10. Chýlová T, Münzbergová Z (2008) Past land use co-determines the present distribution of dry grassland plant species. Preslia 80:183–198Google Scholar
  11. Cousins SAO (2001) Plant species occurrences in a rural hemiboreal landscape: effects of remnant habitats, site history, topography and soil. Ecography 24:461–469CrossRefGoogle Scholar
  12. Cousins SAO, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecol 17:517–529CrossRefGoogle Scholar
  13. Cousins SAO, Ohlson H, Eriksson O (2007) Effects of historical and present fragmentation on plant species diversity in semi-natural grasslands in Swedish rural landscapes. Landscape Ecol 22:723–730CrossRefGoogle Scholar
  14. Dupoeuy JL, Dambrine E, Laffite JD, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984CrossRefGoogle Scholar
  15. Dzwonko Z, Loster S (2007) A functional analysis of vegetation dynamics in abandoned and restored limestone grasslands. J Veg Sci 18:203–212CrossRefGoogle Scholar
  16. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, StuttgartGoogle Scholar
  17. Ellenberg H (2001) Zeigerwerte von Pflanzen in Mitteleuropa. Goltze Verlag, GöttingenGoogle Scholar
  18. Eriksson O (1996) Regional dynamics of plants: A review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258CrossRefGoogle Scholar
  19. Eriksson O, Ehrlén J (2001) Landscape fragmentation and the viability of plant populations. In Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell, Oxford, pp 157–175Google Scholar
  20. Eriksson A, Eriksson O, Berglund H (1995) Species abundance patterns of plants in Swedish seminatural pastures. Ecography 18:310–317CrossRefGoogle Scholar
  21. Foster DR (2000) From bobolinks to bears: interjecting geographical history into ecological studies, environmental interpretation, and conservation planning. J Biogeogr 27:27–30CrossRefGoogle Scholar
  22. Foster DR (2002) Thoreau’s country: a historical-ecological perspective on conservation in the New England landscape. J Biogeogr 29:1537–1555CrossRefGoogle Scholar
  23. Garcia D, Zamora R (2003) Persistence, multiple demographic strategies and conservation in long-lived Mediterranean plants. J Veg Sci 14:921–926CrossRefGoogle Scholar
  24. Garcia D, Zamora R, Hodar JA, Gomez JM (1999) Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in the Mediterranean mountains. Biol Conservation 87:215–220CrossRefGoogle Scholar
  25. Gatterer K, Nezadal W (eds) (2003) Flora des Regnitzgebietes. IHW-Verlag, EchingGoogle Scholar
  26. Gibson CWD, Brown VK (1991) The nature and rate of development of calcareous grassland in Southern Britain. Biol Conservation 58:297–316CrossRefGoogle Scholar
  27. Hanski I (2005) The shrinking world: Ecological consequences of habitat loss. International Ecology Institute, Oldendorf/LuheGoogle Scholar
  28. Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conservation Biol 16:666–673CrossRefGoogle Scholar
  29. Helm A, Hanski L, Patel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77PubMedGoogle Scholar
  30. Herben T, Münzbergová Z, Mildén M, Ehrlén J, Cousins SAO, Eriksson O (2006) Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. J Ecol 94:131–143CrossRefGoogle Scholar
  31. Honnay O, Hermy M, Coppin P (1999) Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for conservation and reforestation. Biol Conservation 87:73–84CrossRefGoogle Scholar
  32. Honnay O, Coart E, Butaye J, Adriaens D, Van Glabeke S, Roldan-Ruiz I (2006) Low impact of present and historical landscape configuration on the genetics of fragmented Anthyllis vulneraria populations. Biol Conservation 127:411–419CrossRefGoogle Scholar
  33. Honnay O, Adriaens D, Coart E, Jacquemyn H, Roldan-Ruiz I (2007) Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L. Conservation Genet 8:293–303CrossRefGoogle Scholar
  34. Jump AS, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358CrossRefGoogle Scholar
  35. Kiviniemi K, Eriksson O (2002) Size-related deterioration of semi-natural grassland fragments in Sweden. Diversity Distrib 8:21–29CrossRefGoogle Scholar
  36. Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe Vegetationsk 38:1–334Google Scholar
  37. Koerner W, Dupouey JL, Dambrine E, Benoit M (1997) Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358CrossRefGoogle Scholar
  38. Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn-und Blütenpflanzen Deutschlands. Schriftenreihe Vegetationsk 29:299–444Google Scholar
  39. Laudensack A (1994) Vegetationskundliche Untersuchungen von Wacholderstandorten. Naturschutzforschung in Franken I. Naturschutzzentrum Wasserschloss, MitwitzGoogle Scholar
  40. Leach MK, Givnish TJ (1996) Ecological determinants of species loss in remnant prairies. Science 273:1555–1558CrossRefGoogle Scholar
  41. Legendre P (1993) Spatial autocorrelation – trouble or new paradigm. Ecology 74:1659–1673CrossRefGoogle Scholar
  42. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, AmsterdamGoogle Scholar
  43. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845CrossRefGoogle Scholar
  44. Lindborg R, Cousins SAO, Eriksson O (2005) Plant species response to land use change – Campanula rotundifolia, Primula veris and Rhinanthus minor. Ecography 28:29–36CrossRefGoogle Scholar
  45. Lunt ID, Spooner PG (2005) Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–1873CrossRefGoogle Scholar
  46. Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Amer Statist 54:17–24CrossRefGoogle Scholar
  47. Mildén M, Münzbergová Z, Herben T, Ehrlén J (2005) Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecol Modelling 199:464–475CrossRefGoogle Scholar
  48. Mildén M, Cousins SAO, Eriksson O (2007) The distribution of four grassland plant species in relation to landscape history in a Swedish rural area. Ann Bot Fenn 44:416–426Google Scholar
  49. Molisch H (1929) Die Lebensdauer der Pflanze. Gustav Fischer, JenaGoogle Scholar
  50. Motzkin G, Foster DR (2002) Grasslands, heathlands and shrublands in costal New England: historical interpretations and approaches to conservation. J Biogeogr 29:1569–1590CrossRefGoogle Scholar
  51. Oates MR (1995) Butterfly conservation within the management of grassland habitats. In Pullin AS (ed) Ecology and conservation of butterflies, Chapman and Hall, London, pp 98–112Google Scholar
  52. Oberdorfer E (1978) Süddeutsche Pflanzengesellschaften, Teil 2. Gustav Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  53. Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landscape Ecol 14:187–196CrossRefGoogle Scholar
  54. Pigott CD (1968) Biological flora of the British Isles. Cirsium acaulon (L.) Scop. J Ecol 56:597–612CrossRefGoogle Scholar
  55. Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conservation Genet 5:145–156CrossRefGoogle Scholar
  56. Poschlod P, Jackel A (1993) The dynamics of the generative diaspore bank of calcareous grassland plants. 1. Seasonal dynamics of diaspore rain and diaspore bank in two calcareous grassland sites of the Suebian-Alb. Flora 188:49–71Google Scholar
  57. Poschlod P, WallisDeVries M F (2002) The historical and socioeconomic perspective of calcareous grasslands – lessons from the distant and recent past. Biol Conservation 104:361–376CrossRefGoogle Scholar
  58. Poschlod P, Kiefer S, Tränkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–91CrossRefGoogle Scholar
  59. Pykälä J, Luoto M, Heikkinen RK, Kontula T (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic Appl Ecol 6:25–33CrossRefGoogle Scholar
  60. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at:
  61. Ross KA, Fox BJ, Fox MD (2002) Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J Biogeogr 29:749–765CrossRefGoogle Scholar
  62. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity – Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  63. Saunders DA, Smith GT, Ingram JA, Forrester RI (2003) Changes in a remnant of salmon gum Eucalyptus salmonophloia and York gum E. loxophleba woodland, 1978 to 1997. Implications for woodland conservation in the wheat-sheep regions of Australia. Biol Conservation 110:245–256CrossRefGoogle Scholar
  64. Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landscape Res 79:195–415Google Scholar
  65. Ssymank A (1994) Neue Anforderungen im europäischen Naturschutz. Das Schutzgebietssystem Natura 2000 und die “FFH Richtlinie” der EU. Natur Landschaft 69:395–406Google Scholar
  66. Sutherland WJ, Hill DA (eds) (1995) Managing habitats for conservation. Cambridge University Press, CambridgeGoogle Scholar
  67. Svenning J-C, Baktoft KH, Balslev H (2009) Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. Pl Ecol 201:221–234CrossRefGoogle Scholar
  68. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  69. Van Dijk G (1991) The status of semi-natural grasslands in Europe. In Goriup PD, Batten LA, Norton JA (eds) The conservation of lowland dry grassland birds in Europe. JNCC, NewsburyGoogle Scholar
  70. Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conservation 104:315–318CrossRefGoogle Scholar
  71. Watkins C (1993) Ecological effects of afforestation. CAB International, OxfordGoogle Scholar
  72. Weisel H (1971) Die Bewaldung der nördlichen Frankenalb. Selbstverlag der Fränkischen Geographischen Gesellschaft, ErlangenGoogle Scholar
  73. Willems JH (2001) Problems, approaches, and results in restoration of Dutch calcareous grassland during the last 30 years. Restoration Ecol 9:147–154CrossRefGoogle Scholar
  74. Williams NSG, Morgan JW, McCarthy MA, McDonnell MJ (2006) Local extinction of grassland plants: the landscape matrix is more important than patch attributes. Ecology 87:3000–3006CrossRefPubMedGoogle Scholar
  75. Yan J (2004) Geepack: Generalized estimating equation package. R package version 0.2–10. Available at:

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • Jonathan Heubes
    • 1
    • 2
  • Vroni Retzer
    • 3
  • Sebastian Schmidtlein
    • 4
  • Carl Beierkuhnlein
    • 3
  1. 1.Biodiversity and Climate Research Centre (BiK-F)Frankfurt a. MainGermany
  2. 2.Department of Ecology and GeobotanyUniversity of FrankfurtFrankfurt a. MainGermany
  3. 3.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  4. 4.Department of Geography, Vegetation GeographyUniversity of BonnBonnGermany

Personalised recommendations