Folia Geobotanica

, Volume 46, Issue 2–3, pp 289–302 | Cite as

The Association of Dispersal and Persistence Traits of Plants with Different Stages of Succession in Central European Man-Made Habitats

  • Vít Latzel
  • Jitka Klimešová
  • Jiří Doležal
  • Petr Pyšek
  • Oliver Tackenberg
  • Karel Prach
Article

Abstract

Traits related to seed dispersal, clonality and bud bank affect the success or failure of plant species. Using data from 13 successional seres in various human-made habitats the spectra of traits associated with dispersal and persistence were compared to determine the traits that can be used to predict the occurrence of particular plant species at each stage in a succession and how the importance of these traits changes over time. Differences in the traits of species associated with primary and secondary successions were also studied. Species with seeds that are dispersed by water (hydrochory) decreased in abundance during the course of succession. Species with a splitting main root, monocyclic and dicyclic shoots also decreased in abundance. Species capable of forming a potential below-ground bud bank, hypogeogenous rhizome and retaining a long-term connection with clonal offspring increased in abundance. The results indicate that seed dispersal is more important in determining the species composition in the early stages of succession whereas bud banks and clonal traits are more important in the later stages and for colonizing a locality. Primary and secondary seres did not remarkably differ in the trait spectra of the species present indicating that these trends occur in both types of succession.

Keywords

Bud bank Clonality Disturbance Persistence Plant traits Seed dispersal Succession 

Notes

Acknowledgements

This study was financially supported by long-term institutional research plan of the Institute of Botany AS CR (AV0Z60050516), MSM6007665801, GA526/07/0808, DAAD (D/07/01321). OT was also supported by the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts and BIK-F. P.P. was supported by grants nr. AV0Z60050516, MSM0021620828 LC06073 and K.P. by IAA600050702. We thank Tony Dixon for improving our English.

Supplementary material

12224_2010_9074_MOESM1_ESM.doc (184 kb)
ESM 1 (DOC 184 kb)
12224_2010_9074_MOESM2_ESM.doc (160 kb)
ESM 2 (DOC 159 kb)

References

  1. Bakker JP, Bakker ES, Rosen E, Verweij GL, Bekker RM (1996) Soil seed bank composition along a gradient from dry alvar grassland to Juniperus shrubland. J Veg Sci 7:165–176CrossRefGoogle Scholar
  2. Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH (1998) Seed size, shape and vertical distributions in the soil: indicators of seed longevity. Funct Ecol 12:834–842CrossRefGoogle Scholar
  3. Bischoff A, Warthemann G, Klotz S (2009) Succession of floodplain grasslands following reduction in land use intensity: the importance of environmental conditions, management and dispersal. J Appl Ecol 46:241–249CrossRefGoogle Scholar
  4. Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007) Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? J Veg Sci 18:911–920CrossRefGoogle Scholar
  5. de Bello F, Lepš J, Sebastia MT (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42:824-833CrossRefGoogle Scholar
  6. Ehrlén J, Munzbergová Z, Diekmann M, Eriksson O (2006) Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol 6:1224–1232CrossRefGoogle Scholar
  7. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248Google Scholar
  8. Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assnlby. Ecol Lett 8:1283–1290CrossRefGoogle Scholar
  9. Glenn-Lewin DC, Peet RK, Velen TT (1992) Plant succession. Theory and prediction. Chapman and Hall, LondonGoogle Scholar
  10. Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32CrossRefGoogle Scholar
  11. Kleyer M (1999) Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. J Veg Sci 10:697–708CrossRefGoogle Scholar
  12. Kleyer M, Bekker RM, Bakker J, Knevel IC, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch G, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga W, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA Traitbase: A database of plant life-history traits of North West Europe. J Ecol 96:1266–1274CrossRefGoogle Scholar
  13. Klimešová J, Klimeš L (2006) CLO-PLA3 – A database of clonal plants in central Europe. Available at: http://www.clopla.butbn.cas.cz
  14. Klimešová J, Klimeš L (2008) Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80:255–275Google Scholar
  15. Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:245–253Google Scholar
  16. Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirschner J, Štěpánek J (2002) Klíč ke Květeně České republiky (Key to the Flora of the Czech Republic). Academia, PrahaGoogle Scholar
  17. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  18. McCullagh P, Nelder JA (1989) Generalized linear models. Ed. 2. Chapman and Hall, LondonGoogle Scholar
  19. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol.21:178–185PubMedCrossRefGoogle Scholar
  20. Moore KA, Elmendorf SC (2006) Propagule vs. niche limitation: untangling the mechanisms behind plant species’ distributions. Ecol Lett 7:797–804CrossRefGoogle Scholar
  21. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285PubMedCrossRefGoogle Scholar
  22. Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant–communities subject to recurrent disturbances. Vegetatio 43:5–21CrossRefGoogle Scholar
  23. Osbornová J, Kovářová M, Lepš J, Prach K (eds) (1989) Succession in abandoned fields. Studies in Central Bohemia. Kluwer Academic Publishers, DordrechtGoogle Scholar
  24. Ozinga WA, Bekker RM, Schaminee JHJ, Van Groenendael JM (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777CrossRefGoogle Scholar
  25. Ozinga WA, Hennekens SM, Schaminée JHJ, Bekker RM, Prinzing A, Bonn S, Poschlod P, Tackenberg O, Thompson K, Bakker JP, van Groenendael JM (2005a) Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach. Folia Geobot 40:53–67CrossRefGoogle Scholar
  26. Ozinga WA, Schamineée JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005b) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561CrossRefGoogle Scholar
  27. Ozinga WA, Hennekens SM, Schaminée JHJ, Smits NAC, Bekker RM, Römermann C, Klimeš L, Bakker JP, van Groenendael JM (2007) Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints. J Veg Sci 18:489–497CrossRefGoogle Scholar
  28. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74PubMedCrossRefGoogle Scholar
  29. Pickett STA, Collins SL, Armesto JJ (1987) Models, mechanisms, and pathways of succession. Bot Rev 53:335–371CrossRefGoogle Scholar
  30. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP – a database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271CrossRefGoogle Scholar
  31. Prach K (1987) Succession of vegetation on dumps from strip coal mining, N.W. Bohemia, Czechoslovakia. Folia Geobot Phytotax 22:339–354Google Scholar
  32. Prach K, Pyšek P (1994) Clonal plants – what is their role in succession? Folia Geobot Phytotax 29:307–320CrossRefGoogle Scholar
  33. Prach K, Pyšek P, Šmilauer P (1997) Changes in species traits during succession: A search for pattern. Oikos 79:201–205CrossRefGoogle Scholar
  34. Prach K, Pyšek P, Bastl M (2001) Spontaneous vegetation succession in human – disturbed habitats: A pattern across seres. Appl Veg Sci 4:83–88CrossRefGoogle Scholar
  35. Prach K, Pyšek P, Jarošík V (2007) Climate and pH as determinants of vegetation succession in Central European man-made habitats. J Veg Sci 18:701–710CrossRefGoogle Scholar
  36. Pyšek A (1978) Ruderal vegetation of the city of Plzeň. PhD Thesis, Institute of Botany, Academy of Sciences of the Czech Republic, PrůhoniceGoogle Scholar
  37. Pyšek P (1992) Dominant species exchange during succession in reclaimed habitats: a case study from areas deforested due to air pollution. Forest Ecol Managem 54:27–44CrossRefGoogle Scholar
  38. Ricotta C, Burrascano S (2008) Beta diversity for functional ecology. Preslia 80:61–71Google Scholar
  39. StatSoft Inc. (2008) STATISTICA (Data Analysis Software System), Version 8.0. StatSoft Inc., Tulsa, Oklahoma. Available at: www.statsoft.com
  40. Simberloff D (2004) Community ecology: Is it time to move on? Amer Naturalist 163:787–799CrossRefGoogle Scholar
  41. Tackenberg O, Stöcklin J (2008) Wind dispersal of alpine plant species: A comparison with lowland species. J Veg Sci 19:109–118CrossRefGoogle Scholar
  42. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (Version 4.5). Microcomputer Power, Ithaca, NYGoogle Scholar
  43. Thompson K, Jalili A, Hodgson JG, Hamzeh’ee B, Asri Y, Shaw S, Shirvany A, Yazdani S, Khoshnevis M, Zarrinkamar F, Ghahramani M-A, Safavi R (2001) Seed size, shape and persistence in the soil in an Iranian flora. Seed Sci Res 11:345–355Google Scholar
  44. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • Vít Latzel
    • 1
  • Jitka Klimešová
    • 2
  • Jiří Doležal
    • 2
    • 3
  • Petr Pyšek
    • 1
    • 4
  • Oliver Tackenberg
    • 5
  • Karel Prach
    • 2
    • 3
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  3. 3.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Department of Ecology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
  5. 5.Institute of Ecology, Evolution and DiversityUniversity of FrankfurtFrankfurtGermany

Personalised recommendations