Folia Geobotanica

, Volume 45, Issue 3, pp 279–302 | Cite as

Short-Term Vegetation Dynamics of Alnus Dominated Peatlands: a High Resolution Palaeoecological Case Study from Western Pomerania (NE Germany)

  • Alexandra Barthelmes
  • Dörthe Gerloff
  • Pim de Klerk
  • Hans Joosten
Article

Abstract

Actual ecological research postulates for alder carrs a cyclic alternation of Alnus tree vegetation with open fen or Salix dominated vegetation. Such cycles are also indicated in palaeo-ecological studies, but normally the temporal resolution of these studies is insufficient to resolve the duration of short-term cycles in vegetation development. This paper presents a high resolution palaeoecological study (including pollen, macrofossils and non-pollen palynomorphs) of a Late Holocene wood peat section from the small, long-term Alnus dominated peatland ‘Heger Soll’ in the ‘Rodder Forst’ in Western Pomerania (NE Germany) to reconstruct short-term vegetation changes. During a time-span of ca. 800 years, sedge-dominated fen vegetation types alternated with two phases of Alnus carr and one phase of Salix shrubland. The alder carr decline coincided with the beginning of intensified human activity in the surroundings of the mire and was probably connected to increased water discharge resulting from large-scale deforestation, after which willow scrub and sedge fen became established. Growth of Alnus trees was associated with prolonged phases of reduced human impact and probably less water supply. This study shows that human impact on the uplands surrounding the mire and on the alder carr itself may explain the observed “cyclic” vegetation development of alder carrs, willow scrubs and sedge fens in Central Europe.

Keywords

Alnus carrs High resolution palaeo-ecology Macrofossil analysis Palynology Salix scrubs Western Pomerania (NE Germany) 

Supplementary material

12224_2010_9063_MOESM1_ESM.doc (1.3 mb)
Electronic Supplementary Material 1ROD upland pollen diagram (Alnus excluded from pollen sum). Relative frequencies are presented as actual values (closed curves) and with a 5-times exaggeration. The “pollen sum” numbers present the number of grains included in the upland pollen sum. For type nomenclature, see text. (DOC 1330 kb)
12224_2010_9063_MOESM2_ESM.doc (1.4 mb)
Electronic Supplementary Material 2Pollen concentration diagram ROF—selected types (grey curves—types excluded from pollen sum). Letters (m, g) and asterisks in brackets indicate the literature sources used for identification (see the text for details) (DOC 1395 kb)
12224_2010_9063_MOESM3_ESM.doc (804 kb)
Electronic Supplementary Material 3ROD macrofossil diagram (selected curves only). The histogram presents real values (in volume % or number N per 25 cm³, closed bars) and a 5-times exaggeration (open bars). For further information, see Barthelmes (2009). (DOC 803 kb)
12224_2010_9063_MOESM4_ESM.doc (470 kb)
Electronic Supplementary Material 4AMS 14C-dates of core ROD. For information on the calibration procedure, see text and Barthelmes (2009). (DOC 470 kb)

References

  1. Aas G (2003) Die Schwarzerle, Alnus glutinosa – dendrologische Anmerkungen. In Hamberger J (ed) Beiträge zur Schwarzerle. Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising, pp 7–10Google Scholar
  2. Andersen ST (1979) Identification of wild grass and cereal pollen. Danmarks Geol Undersøg Årbog 1978:69–92Google Scholar
  3. Bakker M, Van Smeerdijk DG (1982) A palaeoecological study of a Late Holocene section from ‘Het Ilperveld’, Western Netherlands. Rev Palaeobot Palynol 36:95–163CrossRefGoogle Scholar
  4. Barthelmes A (2000) Paläoökologische Untersuchungen zur Entstehung von Erlen-Bruchwaldtorfen. MSc Thesis, University of Greifswald, GreifswaldGoogle Scholar
  5. Barthelmes A (2002) Vom Kesselmoor zum Quellmoor – ungewöhnliche Moorbildungssequenzen im Rodder Forst (Mecklenburg-Vorpommern). Greifswalder Geogr Arbeiten 26:131–134Google Scholar
  6. Barthelmes A. (2009) Vegetation dynamics and carbon sequestration of Holocene alder (Alnus glutinosa) carrs in NE Germany. PhD Thesis, Greifswald University, GreifswaldGoogle Scholar
  7. Barthelmes A, Prager A, Joosten H (2006) Palaeoecological analysis of Alnus wood peats with special attention to non-pollen palynomorphs. Rev Palaeobot Palynol 141:33–51CrossRefGoogle Scholar
  8. Bäßler M, Jäger EJ, Werner K (eds) (1996) Rothmaler – Exkursionsflora von Deutschland 2. Gustav Fischer, Jena, StuttgartGoogle Scholar
  9. Benkert D, Fukarek F, Korsch H (eds) (1996) Verbreitungsatlas der Farn- und Blütenpflanzen Ost-deutschlands. Gustav Fischer, Jena, Stuttgart, Lübeck, UlmGoogle Scholar
  10. Berggren G (1969) Atlas of seeds and small fruits of Northwest-European plant species with morphological descriptions, 2 – Cyperaceae. Swedish National Science Research Council, StockholmGoogle Scholar
  11. Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) (1996) Palaeoecological events during the last 15 000 years. J. Wiley, ChichesterGoogle Scholar
  12. Białobrzeska M, Truchanowiczówna J (1960) The variability of shape of fruits and scales of the European birches (Betula L.) and their determination in fossil material. Monogr Bot 9:87–92Google Scholar
  13. Brown AG (1988) The palaeoecology of Alnus (alder) and the postglacial history of floodplain vegetation. Pollen percentage and influx data from the West Middlands, United Kingdom. New Phytol 110:425–436CrossRefGoogle Scholar
  14. Clausnitzer U, Succow M (2001) Vegetationsformen der Gebüsche und Wälder. In Succow, M, Joosten H (eds) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, pp 161–170Google Scholar
  15. De Klerk P (2002) Changing vegetation patterns in the Endinger Bruch area (Vorpommern, NE Germany) during the Weichselian Lateglacial and Early Holocene. Rev Palaeobot Palynol 119:275–309CrossRefGoogle Scholar
  16. De Klerk P (2004) Confusing concepts in Lateglacial stratigraphy and geochronology: origin, consequences, conclusions (with special emphasis on the type locality Bøllingsø). Rev Palaeobot Palynol 129:265–298CrossRefGoogle Scholar
  17. De Klerk P, Joosten H (2007) The difference between pollen types and plant taxa: a plea for clarity and scientific freedom. Eiszeitalter und Gegenwart/Quatern Sci J 56:162–171Google Scholar
  18. Dinter W, Bohn U (1998) Zur Soziologie und Ökologie von Alnus glutinosa in Mitteleuropa. Jahrb Ges Ingenieurbiol e.V. 7:65–80Google Scholar
  19. Döring U (1987) Zur Feinstruktur amphibischer Erlenbruchwälder. Kleinstandortlicher Differenzierungen in der Bodenvegetation des Carici elongatae-Alnetum im Hannoverschen Wendland. Tuexenia 7:347–366Google Scholar
  20. Döring-Mederake U (1990) Alnion forests in Lower Saxony (FRG), their ecological requirements, classification and position within Carici elongatae-Alnetum of Northern Central Europe. Pl Ecol 89:107–119CrossRefGoogle Scholar
  21. Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ed. 4. Eugen Ulmer, StuttgartGoogle Scholar
  22. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Ed. 2. Scripta Geobotanica 18, Goltze KG, GöttingenGoogle Scholar
  23. Eschenbach C (1995) Zur Physiologie und Ökologie der Schwarzerle (Alnus glutinosa). PhD Thesis, University of Kiel, KielGoogle Scholar
  24. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edition (revised by Fægri K, Kaland PE, Krzywinski K). John Wiley and Sons, ChichesterGoogle Scholar
  25. Frahm JP, Frey W (1992) Moosflora. Eugen Ulmer, StuttgartGoogle Scholar
  26. Fott B (1959) Algenkunde. Gustav Fischer, JenaGoogle Scholar
  27. Gill CJ (1970) The flooding tolerance of woody species – a review. Forest Abstr 31:671–688Google Scholar
  28. Grimm EC (1992) TILIA 1.12 and TILIAGRAPH 1.18 (software). Illinois State Museum, Springfield, IllinoisGoogle Scholar
  29. Grimm EC (2004) TGView 1.6.2 (software). Illinois State Museum, Springfield, IllinoisGoogle Scholar
  30. Grosse-Brauckmann G, Streitz B (1992) Pflanzliche Makrofossilien mitteleuropäischer Torfe. III. Früchte, Samen und einige Gewebe (Fotos von fossilen Pflanzenresten). Telma 22:53–102Google Scholar
  31. Haeupler H, Schönfelder P (eds) (1989) Atlas der Farn- und Blütenpflanzen der Bundesrepublik Deutschland. Ed 2. Eugen Ulmer, StuttgartGoogle Scholar
  32. Hofmann G (2003) Die Schwarz-Erle (Alnus glutinosa (L.) Gaertn.) in der Waldvegetation des ostdeutschen Tieflandes. Eberswalder Forstl Schriftenreihe 17:19–38Google Scholar
  33. Jäger EJ, Werner K (2005) Rothmaler – Exkursionsflora von Deutschland, Kritischer Band 4. Ed. 10, Spektrum, MünchenGoogle Scholar
  34. Janke V, Janke W (1970) Zur Entstehung und Verbreitung der Kleingewässer im nordostmecklenburgischen Grundmoränenbereich. Arch Naturschutz Landschaftsforsch 10:3–18Google Scholar
  35. Janssen CR (1959) Alnus as a disturbing factor in pollen diagrams. Acta Bot Neerl 8:55–58Google Scholar
  36. Janssen CR (1966) Recent pollen spectra from the deciduous and coniferous-deciduous forest of Northeastern Minnesota: a study in pollen dispersal. Ecology 47:804–825CrossRefGoogle Scholar
  37. Janssen CR (1973) Local and regional pollen deposition. In Birks HJB, West RG (eds) Quaternary plant ecology. 14th Symposium of the British Ecological Society, Blackwell Scientific Publications, Oxford, pp 31–42Google Scholar
  38. Janssen CR, IJzermans-Lutgerhorst W (1973) A ‘local’ Late-Glacial pollen diagram from Limburg, The Netherlands. Acta Bot Neerl 22:213–220Google Scholar
  39. Jeník J, Končalová MN, Jičínská D, Přibil S (2002) Willow carr: dominants and life strategies. In Květ J, Jeník J, Soukupová L (eds) Freshwater wetlands and their sustainable future – a case study of the Třeboň Basin Biosphere Reserve, Czech Republik. Man and Biosphere Series 28:269–282Google Scholar
  40. Joosten H, De Klerk P (2002) What’s in a name? Some thoughts on pollen classification, identification, and nomenclature in Quaternary palynology. Rev Palaeobot Palynol 122:29–45CrossRefGoogle Scholar
  41. Joosten H, De Klerk P (2007) DAMOCLES: a DAshing MOnolith Cutter for fine sectioning of peats and sediments into LargeE Slices. Boreas 36:76–81Google Scholar
  42. Kac NJ, Kac SW (1933) Atlas rastitel’nykh ostatkov v torfe (Atlas of plant remnants in peat). Gosudarstvennoe izdatel’stvo kolkhoznoi i sovkhoznoi literatury, MoscowGoogle Scholar
  43. Kac NJ, Kac SV, Kipiani MG (1965) Atlas i opredelitel’ plodov i semyan vstrechayushchikhsya v chetvertichnykh otlozheniyakh SSSR. (Atlas and keys of fruits and seeds occurring in the Quaternary deposits of USSR). Nauka, MoscowGoogle Scholar
  44. Kalis AJ, Van der Knaap WO, Schweizer A, Urz R (2006) A three thousand year succession of plant communities on a valley bottom in the Vosges Mountains, NE France, reconstructed from fossil pollen, plant macrofossils and modern phytosociological communities. Veg Hist Archaeobot 15:377–390CrossRefGoogle Scholar
  45. Kangas CK (1990) Long-term development of forested wetlands. In Lugo AE, Brinson M, Brown S (eds) Forested wetlands. Ecosystems of the World 15. Elsevier, Amsterdam, pp 25–51Google Scholar
  46. Kätzel R (2003) Zum physiologischen Anpassungspotential der Schwarz-Erle. In Die Schwarz-Erle (Alnus glutinosa (L.) Gaertn.) im nordostdeutschen Tiefland. Eberswalder Forstl Schriftenreihe 17:39–45Google Scholar
  47. Klafs G, Jeschke L, Schmidt H (1973) Genese und Systematik wasserführender Ackerhohlformen in den Nordbezirken der DDR. Arch Naturschutz Landschaftsforsch 13:287–307Google Scholar
  48. Komárek J, Jankovská V (2001) Review of the green algal genus Pediastrum; implication for pollenanalytical research. Biblioth Phycol 108:1–127Google Scholar
  49. Körber-Grohne U (1964) Bestimmungsschlüssel für subfossile Juncus-Samen und Gramineen-Früchte. Probleme der Küstenforschung im südlichen Nordseegebiet 7:1–47Google Scholar
  50. Korpel’ Š (1995) Die Urwälder der Westkarpaten. Gustav Fischer, StuttgartGoogle Scholar
  51. Koska I (2004) 13 Klasse: Phragmito-Magno-Caricetea Klinka in Klinka & V. Novák 1941 – Röhrichte, Großseggenriede und Feuchtstaudenfluren nährstoffreicher Standorte. In Berg C, Dengler J, Abdank A, Isermann M (eds) Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung (Textband und Tabellenband). Weißdorn-Verlag, Jena, pp 196–224Google Scholar
  52. Krause W (1997) Charales (Charophycea). In Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasser- flora von Mitteleuropa 18. Gustav Fischer, JenaGoogle Scholar
  53. Landwehr J (1966) Atlas van de Nederlandse Bladmoosen. Erla, AmsterdamGoogle Scholar
  54. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Gustav Fischer, JenaGoogle Scholar
  55. Lugo AE, Brison M, Brown S (eds) (1990) Forested wetlands. Ecosystems of the world 15. Elsevier, AmsterdamGoogle Scholar
  56. Marek S (1965) Biologia i stratygrafia torfowisk olszynowych w Polsce (Biology and stratigraphy of alder bogs in Poland). Zeszymy Problemove Postepów Nauk Rolziczych 57:5–158Google Scholar
  57. McVean DN (1955) Ecology of Alnus glutinosa (L.) Gaertn. II. Seed distribution and germination. J Ecol 43:61–71CrossRefGoogle Scholar
  58. McVean DN (1956) Ecology of Alnus glutinosa (L.) Gaertn. III. Seedling establishment. J Ecol 44:195–218CrossRefGoogle Scholar
  59. Michaelis D (2001) Schlüssel zur Bestimmung von Braunmoosen aus Torfen anhand einzelner Blättchen. Telma 31:79–104Google Scholar
  60. Middeldorp AA (1982) Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog system. Rev Palaeobot Palynol 37:225–282CrossRefGoogle Scholar
  61. Middeldorp AA (1986) Functional palaeoecology of the Hahnenmoor raised bog ecosystem – a study of vegetation history, production and decomposition by means of pollen density dating. Rev Palaeobot Palynol 49:1–73CrossRefGoogle Scholar
  62. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  63. Müller J, Rosenthal G (1998) Brachesukzessionen – Prozesse und Mechanismen. Ber Inst Landschafts- und Pflanzenökol Univ Hohenheim, Beih 5:103–132Google Scholar
  64. Newman C, O’Connell M, Dillon M, Molloy K (2007) Interpretation of charcoal and pollen data relating to a late Iron Age ritual site in eastern Ireland: a holistic approach. Veg Hist Archeobot 16:349–365CrossRefGoogle Scholar
  65. Nilson Ö, Helmqvist H (1967) Studies on the nutlet structure of South Scandinavian species of Carex. Bot Not 120:460–485Google Scholar
  66. Ohmann LF, Knighton MD, McRoberts R (1990) Influence of flooding duration on the biomass growth of alder and willow. Res Pap NC-292, US Department for Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, MNGoogle Scholar
  67. Pals JP, Van Geel B, Delfos A (1980) Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (Noord Holland). Rev Palaeobot Palynol 30:371–418CrossRefGoogle Scholar
  68. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In Likens GE (ed) Long-term studies in ecology. Approaches and alternatives. Springer, New York, pp 110–135Google Scholar
  69. Pokorný P, Klimešová J, Klimeš L (2000) Late Holocene history and vegetation dynamics of a floodplain alder carr: a case study from eastern Bohemia, Czech Republic. Folia Geobot 35:43–58CrossRefGoogle Scholar
  70. Prager A, Barthelmes A, Theuerkauf M, Joosten H (2006) Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev Palaeobot Palynol 141:7–31CrossRefGoogle Scholar
  71. Punt W (ed) (1976) The northwest European pollen flora I. Elsevier, AmsterdamGoogle Scholar
  72. Punt W, Clarke GCS (eds) (1980) The northwest European pollen flora II. Elsevier, AmsterdamGoogle Scholar
  73. Punt W, Clarke GCS (eds) (1981) The northwest European pollen flora III. Elsevier, AmsterdamGoogle Scholar
  74. Punt W, Clarke GCS (eds) (1984) The northwest European pollen flora IV. Elsevier, AmsterdamGoogle Scholar
  75. Punt W, Blackmore S (eds) (1991) The northwest European pollen flora VI. Elsevier, AmsterdamGoogle Scholar
  76. Punt W, Blackmore S, Clarke GCS (eds) (1988) The northwest European pollen flora V. Elsevier, AmsterdamGoogle Scholar
  77. Punt W, Hoen PP, Blackmore S (eds) (1995) The northwest European pollen flora VII. Elsevier, AmsterdamGoogle Scholar
  78. Punt W, Blackmore S, Hoen PP, Stafford PJ (eds) (2003) The northwest European pollen flora VIII. Elsevier, AmsterdamGoogle Scholar
  79. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hugher KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) Intcal04 terrestrial radiocarbon age calibration, 0–26 cal Kyr BP. Radiocarbon 46:1029–1058Google Scholar
  80. Saarse L, Niinemets E, Poska A, Veski S (2010) Is there a relationship between crop farming and the Alnus decline in the eastern Baltic region? Veg Hist Archaeobot 19:17–28CrossRefGoogle Scholar
  81. Sarmaja-Korjonen K (2003) Contemporaneous Alnus decline and the beginning of Iron Age cultivation in pollen stratigraphies from southern Finland. Veg Hist Archaeobot 12:49–59CrossRefGoogle Scholar
  82. Schäfer A, Joosten H (2005) Erlenaufforstung auf wiedervernässten Niedermooren. Institut für dauerhaft umwelt-gerechte Entwicklung von Naturräumen der Erde, GreifswaldGoogle Scholar
  83. Smit R, Olff H (1998) Woody species colonisation in relation to habitat productivity. Pl Ecol 139:203–209CrossRefGoogle Scholar
  84. Spangenberg A (2008) 2000 Jahre Waldentwicklung auf nährstoff- und basenreichen Standorten in mitteleuropäischen Jungpleistozän – Fallstudie Naturschutzgebiet Eldena (Vorpommern, Deutschland). PhD Thesis, University of Greifswald, GreifswaldGoogle Scholar
  85. Stegner J (2000) Erlenbruchwälder – Dynamik in Raum und Zeit. Konsequenzen für den Prozesschutz in einer Waldgesellschaft. Naturschutz Landschaftsplan 32:262–270Google Scholar
  86. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen & Spores 13:615–621Google Scholar
  87. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  88. Succow M, Joosten H (eds) (2001) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  89. Succow M, Stegmann H (2001) Torfarten. In Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 58–62Google Scholar
  90. Svobodová H (1997) Die Entwicklung der Vegetation in Südmähren (Tschechien) während des Spätglazials und Holozäns – eine palynologische Studie. Verh Zool-Bot Ges Österreichs 134:317–356Google Scholar
  91. Telford RJ, Heegaard E, Birks HJB (2004) The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14:296–298CrossRefGoogle Scholar
  92. Tomlinson P (1985) An aid to the identification of fossil buds, bud-scales and catkin-bracts of British trees and shrubs. Circaea 3:45–130Google Scholar
  93. Tucker JJ, Fitter AH (1981) Ecological studies at Askham Bog Nature Reserve. – 2. The population of Far Wood. Naturalist 106:3–14Google Scholar
  94. Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands, based on analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  95. Van Geel B, Hallewas DP, Pals JP (1983) A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev Palaeobot Palynol 38:269–335CrossRefGoogle Scholar
  96. Van Geel B, Klink AG, Pals JP, Wiegers J (1986) An upper Eemian lake deposit from Twente, eastern Netherlands. Rev Palaeobot Palynol 47:31–61CrossRefGoogle Scholar
  97. Van Geel B, Coope GR, Van der Hammen T (1989) Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:25–129CrossRefGoogle Scholar
  98. Walentowski H, Ewald J (2003) Die Rolle der Schwarzerle in den Pflanzengesellschaften Mitteleuropas. In Hamberger J (ed) Beiträge zur Schwarzerle. Bayerische Landesanstalt für Wald und Forstwirtschaft, Freising, pp 11–19Google Scholar
  99. Waller MP (1994) Flandrian vegetational history of South–Eastern England. Stratigraphy of the Brede valley and pollen data from the Brede Brigde. New Phytol 126:369–392CrossRefGoogle Scholar
  100. Weiße R (1987) Die glaziale Entstehung von Kleinsenken. Petermanns Geogr Mitt 131:103–111Google Scholar
  101. Wheeler BD (1980) Plant communities of rich fen systems in England and Wales. III. Fen meadow, fen grassland and fen woodland communities and contact communities. J Ecol 68:761–788CrossRefGoogle Scholar
  102. Wiebe C (1998) Ökologische Charakterisierung von Erlenbruchwälder und ihren Entwässerungsstadien: Vegetation und Standortverhältnisse. Mitt Arbeitsgem Geobot Schleswig-Holstein & Hamburg 56:1–164Google Scholar
  103. Wiegers J (1985) Succession in fen woodland ecosystems in the Dutch haf district. With special reference to Betula pubescens Ehrh. Diss Bot 86:1–152Google Scholar
  104. Wiethold J (1998) Studien zur jüngeren postglazialen Vegetations- und Siedlungsgeschichte im östlichen Schleswig-Holtstein. Universitätsforschungen zur prähistorischen Archäologie 45, Dr. Rudolf Habelt GmbH, BonnGoogle Scholar
  105. Young R, Walanus A, Goslar T, van Geel B, Ralska-Jasiewiczowa M, Wijmstra TA (1999) Test of an equal taxon-weighted modification of Middeldorp’s pollen density dating on data from varved sediments of Lake Gościaź. Rev Palaeobot Palynol 104:213–237CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2010

Authors and Affiliations

  • Alexandra Barthelmes
    • 1
  • Dörthe Gerloff
    • 1
  • Pim de Klerk
    • 2
  • Hans Joosten
    • 1
  1. 1.Institute of Botany and Landscape EcologyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  2. 2.Staatliches Museum für Naturkunde KarlsruheKarlsruheGermany

Personalised recommendations