Folia Geobotanica

, Volume 44, Issue 3, pp 281–306 | Cite as

Enriching Ploidy Level Diversity: the Role of Apomictic and Sexual Biotypes of Hieracium subgen. Pilosella (Asteraceae) that Coexist in Polyploid Populations

  • Anna KrahulcováEmail author
  • Olga Rotreklová
  • František Krahulec
  • Radka Rosenbaumová
  • Ivana Plačková


The capacity to generate variation in ploidy and reproductive mode was compared in facultatively apomictic versus sexual maternal plants that coexist in two model populations. The population structure was studied in polyploid hybrid swarms comprised of Hieracium pilosella (usually sexual, less commonly apomictic), H. bauhini (apomictic), and their hybrids (sexual, apomictic, or sterile). Relationships among established biotypes were proposed on the basis of their DNA ploidy level/chromosome number, reproductive mode and morphology. Isozyme phenotypes and chloroplast DNA haplotypes were assayed in the population that was richer in hybrids. The reproductive origin of seed progeny was identified in both sexual and apomictic mothers, using alternative methods: the karyological, morphological and reproductive characters of the cultivated progeny were compared with those of respective mothers, or flow cytometric seed screening was used. In both populations, the progeny of sexual mothers mainly retained a rather narrow range of ploidy level/chromosome number, while the progeny of facultatively apomictic mothers was more variable. The high-polyploid hybrids, which had arisen from the fertilization of unreduced egg cells of apomicts, mainly produced aberrant non-maternal progeny (either sexually and/or via haploid parthenogenesis). Apparently, such versatile reproduction resulted in genomic instability of the recently formed high-polyploid hybrids. While the progeny produced by both true apomictic and sexual mothers mostly maintained the maternal reproductive mode, the progeny of those ‘versatile’ mothers was mainly sexual. Herein, we argue that polyploid facultative apomicts can considerably increase population diversity.


Facultative apomixis Genome instability Haploid parthenogenesis Hybrid swarms Residual sexuality Unreduced gametes 



We would like to thank H. Jedličková, the director of the Experimental Garden of the Faculty of Education, Masaryk University of Brno-Kejbaly. V. Křišťálová (Košťálová) is acknowledged for assistance in the field and for help in early reproductive system studies. We are grateful to J. Fehrer for kindly revising the first draft of this paper. This collective study was supported by the Czech Science Foundation (projects no. 206/07/0059 and 206/08/0890), by the Academy of Sciences of the Czech Republic (AVOZ60050516) to A.K., F.K., R.R. and I.P. and by the Ministry of Education, Youth and Sports (projects MSM 0021622416 and LC 06073) to O.R.


  1. Asker S, Jerling L (1992) Apomixis in plants. CRC Press, Boca RatonGoogle Scholar
  2. Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96:322–334CrossRefPubMedGoogle Scholar
  3. Bengtsson O, Ceplitis A (2000) The balance between sexual and asexual reproduction in plants living in variable environments. J Evol Biol 13:415–422CrossRefGoogle Scholar
  4. Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Pl Cell 16:228–245CrossRefGoogle Scholar
  5. Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas (Lund) 138:11–20CrossRefGoogle Scholar
  6. Chapman HM, Houliston GJ, Robson B, Iline J (2003) A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Pl Sci 164:719–728CrossRefGoogle Scholar
  7. Chrtek J (2004) Hieracium L. – jestřábník. In Slavík B, Štěpánková J (eds) Květena České republiky (Flora of the Czech Republic) 7. Academia, Praha, pp 540–701Google Scholar
  8. Czapik R (1994) How to detect apomixis in Angiospermae. Polish Bot Stud 8:13–21Google Scholar
  9. de Kovel CGF, de Jong G (2000) Selection on apomictic lineages of Taraxacum at establishment in a mixed sexual-apomictic population. J Evol Biol 13:561–568CrossRefGoogle Scholar
  10. Durand J, Garnier L, Dajoz I, Mousset S, Veuille M (2000) Gene flow in a facultative apomictic Poaceae, the savanna grass Hyparrhenia diplandra. Genetics 156:823–831PubMedGoogle Scholar
  11. Fehrer J, Šimek R, Krahulcová A, Krahulec F, Chrtek J Jr, Bräutigam E, Bräutigam S (2005) Evolution, hybridisation, and clonal distribution of apo- and amphimictic species of Hieracium subgen. Pilosella (Asteraceae: Lactuceae) in a Central European mountain range. In Bakker FT, Chatrou LW, Gravendeel B, Pelser P (eds) Plant species-level systematics: new perspectives on pattern & process. Regnum Veg 143, Koeltz, Königstein, pp 175–201Google Scholar
  12. Fehrer J, Gemeinholzer B, Chrtek J Jr, Bräutigam S (2007a) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molec Phylogenet Evol 42:347–361CrossRefPubMedGoogle Scholar
  13. Fehrer J, Krahulcová A, Krahulec F, Chrtek J Jr, Rosenbaumová R, Bräutigam S (2007b) Evolutionary aspects in Hieracium subgenus Pilosella. In Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Regnum Veg 147, A. R. G. Gantner Verlag, Rugell, pp 359–390Google Scholar
  14. Fitze D, Fehrer J (2000) PCR-RFLP studies of non-coding chloroplast DNA in European Hieracium subgen. Pilosella. Abh Ber Naturkundemus Görlitz 72 (suppl.):4Google Scholar
  15. Gadella TWJ (1984) Cytology and the mode of reproduction of some taxa of Hieracium subgenus Pilosella. Proc Kon Ned Akad Wetensch C 87:387–399Google Scholar
  16. Gadella TWJ (1987) Sexual tetraploid and apomictic pentaploid populations of Hieracium pilosella (Compositae). Pl Syst Evol 157:219–246CrossRefGoogle Scholar
  17. Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev (Lancaster) 41:361–390CrossRefGoogle Scholar
  18. Houliston GJ, Chapman HM (2004) Reproductive strategy and population variabitity in the facultative apomict Hieracium pilosella (Asteraceae). Amer J Bot 91:37–44CrossRefGoogle Scholar
  19. Jeffreys AJ, MacLeod A, Neumann R, Povey S, Royle NJ (1990) “Major minisatellite loci” detected by minisatellite clones 33.6 and 33.15 correspond to the cognate loci D1S111 and D7S437. Genomics 7:449–452CrossRefPubMedGoogle Scholar
  20. Kao RH (2007) Asexuality and the coexistence of cytotypes. New Phytol 175:764–772CrossRefPubMedGoogle Scholar
  21. Koltunow AM (1993) Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Pl Cell 5:1437–1452Google Scholar
  22. Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sexual Pl Reprod 11:213–220CrossRefGoogle Scholar
  23. Krahulcová A, Krahulec F (1999) Chromosome numbers and reproductive systems in selected representatives of Hieracium subgen. Pilosella in the Krkonoše Mts (the Sudeten Mts). Preslia 71:217–234Google Scholar
  24. Krahulcová A, Suda J (2006) A modified method of flow cytometric seed screen simplifies the quantification of progeny classes with different ploidy levels. Biol Pl 50:457–460CrossRefGoogle Scholar
  25. Krahulcová A, Chrtek J Jr, Krahulec F (1999) Autogamy in Hieracium subgen. Pilosella. Folia Geobot 34:373–376CrossRefGoogle Scholar
  26. Krahulcová A, Krahulec F, Chapman HM (2000) Variation in Hieracium subgen. Pilosella (Asteraceae): what do we know about its sources? Folia Geobot 35:319–338CrossRefGoogle Scholar
  27. Krahulcová A, Papoušková S, Krahulec F (2004) Reproduction mode in the allopolyploid facultatively apomictic hawkweed Hieracium rubrum (Asteraceae, H. subgen. Pilosella). Hereditas (Lund) 141:19–30CrossRefGoogle Scholar
  28. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J Jr (2004) The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a synthetic view. Preslia 76:223–243Google Scholar
  29. Krahulec F, Krahulcová A, Papoušková S (2006) Ploidy level selection during germination and early stage of seedling growth in the progeny of allohexaploid facultative apomict, Hieracium rubrum (Asteraceae). Folia Geobot 41:407–416CrossRefGoogle Scholar
  30. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Schuhwerk F (2008) The structure of the agamic complex of Hieracium subgen. Pilosella in the Šumava Mts and its comparison with other regions in Central Europe. Preslia 80:1–26Google Scholar
  31. Lepage E (1967) Étude de quelques hybrides chez nos Épèrvieres (Hieracium) adventices. Naturaliste Canad 94:609–619Google Scholar
  32. Loomis ES (2007) Sex and diversity in the invasive plant Hieracium aurantiacum. M.S. Thesis, The University of Montana, Missoula. Available at: Accessed 21 Nov 2008
  33. Mártonfiová L (2006) Possible pathways of the gene flow in Taraxacum sect. Ruderalia. Folia Geobot 41:183–201CrossRefGoogle Scholar
  34. Mártonfiová L, Majeský L, Mártonfi P (2007) Polyploid progeny from crosses between diploid sexuals and tetraploid apomictic pollen donors in Taraxacum sect. Ruderalia. Acta Biol Cracov, Ser Bot 49:47–54Google Scholar
  35. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl J 21:97–108CrossRefGoogle Scholar
  36. Meirmans PG, Vlot EC, den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16:343–352CrossRefPubMedGoogle Scholar
  37. Menken SBJ, Smit E, den Nijs JCM (1995) Genetical population structure in plants: gene flow between diploid sexual and triploid asexual dandelions (Taraxacum sect. Ruderalia). Evolution 49:1108–1118CrossRefGoogle Scholar
  38. Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42CrossRefPubMedGoogle Scholar
  39. Mráz P, Šingliarová B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): Altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot (Oxford) 101:59–71CrossRefGoogle Scholar
  40. Nogler GA (1984) Gametophytic apomixis. In Johri BM (ed) Embryology of Angiosperms. Springer-Verlag, Berlin & Heidelberg, pp 475–518Google Scholar
  41. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In Crissman HA, Darzynkiewicz Z (eds) Methods in cell biology 33. Academic Press, San Diego, pp 105–110Google Scholar
  42. Richards AJ (1997) Plant breeding systems. Ed. 2, Chapman & Hall, LondonGoogle Scholar
  43. Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans, Ser B 358:1085–1093CrossRefGoogle Scholar
  44. Rotreklová O (2004) Hieracium bauhini group in Central Europe: chromosome numbers and breeding systems. Preslia 76:313–330Google Scholar
  45. Rotreklová O (2008) Hieracium subgen. Pilosella: pollen stainability in sexual, apomictic and sterile plants. Biologia (Bratislava) 63:61–65Google Scholar
  46. Rotreklová O, Krahulcová A, Vaňková D, Peckert T, Mráz P (2002) Chromosome numbers and breeding systems in some species of Hieracium subgen. Pilosella from Central Europe. Preslia 74:27–44Google Scholar
  47. Rotreklová O, Krahulcová A, Mráz P, Mrázová V, Mártonfiová L, Peckert T, Šingliarová B (2005) Chromosome numbers and breeding systems of some European species of Hieracium subgen. Pilosella. Preslia 77:177–195Google Scholar
  48. Savidan Y, Pernès J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600CrossRefGoogle Scholar
  49. Savidan Y, Carman JG, Dresselhaus T (eds) (2001) The flowering of apomixis: from mechanisms to genetic engineering. CIMMIT, IRD, European Commission DG VI (FAIR), Mexico, D.F.Google Scholar
  50. Schranz ME, Dobeš Ch, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Amer J Bot 92:1797–1810CrossRefGoogle Scholar
  51. Štorchová H, Hrdličková R, Chrtek J Jr, Tetera M, Fitze D, Fehrer J (2000) An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49:79–84CrossRefGoogle Scholar
  52. Suda J, Krahulcová A, Trávníček P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450CrossRefGoogle Scholar
  53. Trewick SA, Morgan-Richards M, Chapman HM (2004) Chloroplast DNA diversity of Hieracium pilosella (Asteraceae) introduced to New Zealand: reticulation, hybridization and invasion. Amer J Bot 91:73–85CrossRefGoogle Scholar
  54. van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In Bakker FT, Chatrou LW, Gravendeel B, Pelser P (eds) Plant species-level systematics: new perspectives on pattern & process. Regnum Veg 143, Koeltz, Königstein, pp 101–116Google Scholar
  55. Verduijn MH, van Dijk PJ, van Damme JMM (2004) The role of tetraploids in the sexual-asexual cycle in dandelions (Taraxacum). Heredity 93:390–398CrossRefPubMedGoogle Scholar
  56. Whitton J, Sears ChJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Pl Sci 169:169–182CrossRefGoogle Scholar
  57. Wilson LM, Fehrer J, Bräutigam S, Grosskopf G (2006) A new invasive hawkweed, Hieracium glomeratum (Lactuceae, Asteraceae), in the Pacific Northwest. Canad J Bot 84:133–142CrossRefGoogle Scholar
  58. Zahn KH (1922–30) Hieracium. In Ascherson P, Graebner P (eds) Synopsis der mitteleuropäischen Flora 12 (1), Gebrüder Bornträger, LeipzigGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2009

Authors and Affiliations

  • Anna Krahulcová
    • 1
    Email author
  • Olga Rotreklová
    • 2
  • František Krahulec
    • 1
  • Radka Rosenbaumová
    • 1
    • 3
  • Ivana Plačková
    • 1
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  2. 2.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Botany, National MuseumPrůhoniceCzech Republic

Personalised recommendations