Folia Geobotanica

, Volume 43, Issue 1, pp 49–67

Disturbances on a Wooded Raised Bog—How Windthrow, Bark Beetle and Fire Affect Vegetation and Soil Water Quality?

  • Andrea Kučerová
  • Ladislav Rektoris
  • Táňa Štechová
  • Marek Bastl
Article

Abstract

Pinus rotundata dominated peatbog (Žofinka Nature Reserve) in the Třeboň Basin, Czech Republic, was affected by “natural” disturbances: wind damage (1984), followed by a bark beetle attack, and fire (1994, 2000). Phytosociological relevés were used to document vegetation. Soil water chemistry was compared in three differently affected stands: (1) an undisturbed Pinus rotundata bog forest, (2) a windthrow – bark beetle affected stand and (3) a site burned by wildfire in 2000. The species composition of the windthrow – bark beetle affected sites and the undisturbed P. rotundata bog forest differed mainly in the shrub and tree layers. Burned sites were partly colonized by anemochorous species (e.g. Taraxacum sp. div.) that disappeared within two or three years after colonization. Bare peat was colonized by bryophytes (e.g. Marchantia polymorpha and Funaria hygrometrica) typical of the disturbed sites, and by Polytrichum sp. div. and Aulacomnium palustre. Most plant species characteristic of the P. rotundata bog forest occurred at the burned sites eight years after the fire, but in different abundances. The edificator of the former community—P. rotundata—was mostly absent. Compared with windthrow followed by the bark beetle attack, fire promoted rapid expansion of Molinia caerulea. Soil water in both the undisturbed P. rotundata bog forest and the windthrow – bark beetle affected sites had a similar composition: very low pH values, high P concentrations, low concentrations of cations (Ca2+, Mg2+and K+) and inorganic nitrogen. The concentrations of soluble reactive phosphorus (SRP) and \({\text{NH}}_4^ + - {\text{N}}\) were negatively correlated with the groundwater table. Total P, SRP and \({\text{NH}}_4^ + - {\text{N}}\) concentrations in the soil water at the burned site were by one order of magnitude higher than those in the P. rotundata bog forest, while concentrations of K+, Mg2+ and Ca2+ were only about two times higher. High concentrations of P and N in the soil water found three years after the fire indicated a long-term elevated nutrient content in the soil water.

Keywords

Czech Republic Groundwater chemistry Nitrogen Phosphorus Pinus rotundata Post-fire succession 

References

  1. Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181CrossRefGoogle Scholar
  2. Anonymous (1999–2003) Znečištění ovzduší a atmosférická depozice v datech, Česká republika (Air Pollution and Atmospheric Deposition in Data in the Czech Republic). Czech Hydrometeorological Institute, PrahaGoogle Scholar
  3. Beudert B (1999) Veränderungen im Stoffhaushalt eines abgestorbenen Fichtenökosystems im Forellenbachgebiet des Nationalparks Bayerischer Wald. In: Einzugsgebiet Große Ohe – 20 Jahre hydrologische Forschung im Nationalpark Bayerischer Wald, Symposiumsbericht, 11.5.1999. Nationalparkverwaltung Bayerischer Wald, Grafenau, pp 83–106Google Scholar
  4. Bragazza L, Gerdol R, Rydin H (2003) Effect of mineral and nutrient input on mire bio-geochemistry in two geographical regions. J Ecol 91:417–426CrossRefGoogle Scholar
  5. Bufková I, Prach K, Bastl M (2005) Relationships between vegetation and environment within the mountain floodplain of the Upper Vltava River (Šumava National Park, Czech Republic). Silva Gabreta 11(Suppl. 2):1–70Google Scholar
  6. Businský R (1998) Agregát Pinus mugo v bývalém Československu – taxonomie, rozšíření, hybridní populace a ohrožení (Pinus mugo complex in the former Czechoslovakia – taxonomy, distribution, hybrid populations and threats). Zpr Čes Bot Společ 33:29–52Google Scholar
  7. Clymo RS (1983) Peat. In: Gore AJP (ed) Mires: swamp, bog, fen and moor, general studies. Ecosystems of the World 4A, Elsevier, Amsterdam, pp 159–224Google Scholar
  8. Cronan CS, Grigal DF (1995) Use of calcium aluminium ratios as indicators of stress in forest ecosystems. J Environ Qual 24:209–226Google Scholar
  9. Darke AK, Walbridge MR (2000) Al and Fe biogeochemistry in a floodplain forest: Implication for P retention. Biogeochemistry 51:1–32CrossRefGoogle Scholar
  10. Fischer A, Lindner M, Abs C, Lasch P (2002) Vegetation dynamics in Central European forest ecosystem (near-natural as well as managed) after storm event. Folia Geobot 37:17–32CrossRefGoogle Scholar
  11. Frelich LE, Reich PB (1995) Neighbourhood effect, disturbance and succession in forests of the Western Great Lakes Region. Ecoscience 2:148–158Google Scholar
  12. Gorham E, Eisenreich SJ, Ford J, Santelmann MV (1984) The chemistry of bog waters. In: Stumm W (ed) Chemical processes in lakes. John Wiley & Sons, New York, pp 339–363Google Scholar
  13. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  14. Holubičková B (1960) Studie o vegetaci blat I. (Mrtvý luh) (Studies on peatland vegetation. I. Mrtvý luh). Sborn Vysoké Školy Zeměd v Praze 1960:129–149Google Scholar
  15. Jakšičová T (2003) Vegetační dynamika třeboňských blatkových rašelinišť po narušení (Vegetation dynamics of Pinus rotundata peatbogs after disturbances). B.Sc. thesis, Faculty of Biological Sciences, The University of South Bohemia, České BudějoviceGoogle Scholar
  16. Jankovská V (1980) Paläogeobotanische Rekonstruktion der Vegetationsentwicklung im Becken Třeboňská pánev während des Spätglazials und Holozäns. Vegetace ČSSR A11, Academia, PrahaGoogle Scholar
  17. Jeník J, Rektoris L, Lederer F (2002) Plant life in an endangered mire: Červené blato bog. In: Květ J, Jeník J (eds) Freshwater wetlands and their sustainable future: evidence from the Třeboň Basin BR Man and the Biosphere series, V. 28. UNESCO, Parthenon, Paris, pp 399–408Google Scholar
  18. Jonášová M, Prach K (2004) Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Engineering 23:15–27CrossRefGoogle Scholar
  19. Karlberg B, Twengström S (1983) Applications based on gas diffusion and flow injection analysis. Focus (The Tecator Journal of Technology for Chemical Analysis) 6:14–15Google Scholar
  20. Kästner M, Flössner W (1933) Die Pflanzengesellschaften der erzgebirgischen Moore. Veröffentlichung des Landesverein Sächsischer Heimatschutz, DresdenGoogle Scholar
  21. Kellogg LE, Bridgham SD (2003) Phosphorus retention and movement across an ombrotrophic–minerotrophic peatland gradient. Biogeochemistry 63:299–315CrossRefGoogle Scholar
  22. Koch W (1926) Die Vegetationseinheiten der Linthebene unter Berücksichtigung der Verhältnisse in der Nordostschweiz. Jahrb St Gallischen Naturwis Ges 61(2):1–144Google Scholar
  23. Koroš I, Přibáň K, Rektoris L (1998) Třeboňsko – Žofinka. Studie vodního režimu NPR a jeho narušení (Třeboň Basin – the Žofinka Nature Reserve. Hydrological study). Ms., GET s.r.o., depon. in Administration of the Třeboňsko LPA, TřeboňGoogle Scholar
  24. Kubát K, Hrouda L, Chrtek J jun, Kaplan Z, Kirchner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky (Key to the Flora of the Czech Republic). Academia, PrahaGoogle Scholar
  25. Kučera J, Váňa J (2003) Check- and red list of bryophytes of the Czech Republic. Preslia 75:193–222Google Scholar
  26. Kučera S (1977) Podklady pro vyhlášení SPR Žofinka (Groundwork for the Žofinka Nature Reserve declaration). Ms., depon. in Institute of Botany, TřeboňGoogle Scholar
  27. Kučerová A, Rektoris L, Přibáň K (2000) Vegetation changes of the Pinus rotundata bog forest in the Žofinka Nature Reserve, Třeboň Biosphere Reserve. Příroda (Praha) 17:119–134Google Scholar
  28. Kuhry P (1994) The role of fire in the development of Sphagnum-dominated peatlands in western boreal Canada. J Ecol 82:899–910CrossRefGoogle Scholar
  29. Liška J, Knížek M, Kapitola P (1989) Vážnější ohrožení blatkových porostů na rašeliništi Žofinka v jižních Čechách (Serious threat to the Pinus rotundata stands in the Žofinka peatbog, the South Bohemia). Živa 6:247–248Google Scholar
  30. Loach K (1968) Relations between soil nutrients and vegetation in wet-heats. II. Nutrient uptake by the major species in the field and in controlled conditions. J Ecol 56:117–127CrossRefGoogle Scholar
  31. Mladenoff DJ (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180CrossRefGoogle Scholar
  32. Neuhäusl R (1972) Subkontinentale Hochmoore und ihre Vegetation. Stud Českoslov Akad Věd 13:1–121Google Scholar
  33. Neuhäusl R (1975) Hochmoore am Teich Velké Dářko. Vegetace ČSSR A9, Academia, PrahaGoogle Scholar
  34. Pant HK, Reddy KR (2001) Phosphorus sorption characteristics of estuarine sediments under different redox conditions. J Environ Qual 30:1474–1480PubMedCrossRefGoogle Scholar
  35. Pokorný J, Kučerová A (2000) Monitoring klimatu a atmosférických depozic v CHKO Třeboňsko (Monitoring of the climate and the atmospheric depositions in the Třeboň LPA). In J Pokorný, J Šulcová, M Hátle, J Hlásek (eds) Třeboňsko 2000. Ekologie a ekonomika Třeboňska po dvaceti letech. UNESCO, Třeboň/MaB, ENKI o.p.s, pp 87–99Google Scholar
  36. Přibáň K, Jeník J, Ondok JP, Popela P (1992) Analysis and modelling of wetland microclimate. The case study of Třeboň Biosphere Reserve. Stud Českoslov Akad Věd 2:1–167Google Scholar
  37. Rektoris L, Kučerová A, Jakšičová T (2003) Monitoring revitalizačních zásahů v NPR Žofinka, CHKO Třeboňsko (Monitoring of revitalization interventions in Žofinka Nature Reserve, Třeboň Biosphere Reserve). Příroda (Praha) (Suppl.):117–132Google Scholar
  38. Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427PubMedCrossRefGoogle Scholar
  39. Rowe JS (1983) Concepts of fire effects on plant individuals and species. In: Wien RW, MacLean DA (eds) The role of fire in circumpolar ecosystems. John Wiley & Sons, New York, pp 134–154Google Scholar
  40. Rybníček K (2000) Present results of vegetation and habitat monitoring in mountain bogs of the Jizerské hory Mts, 1991–1998. Příroda (Praha) 17:101–108Google Scholar
  41. Rydin H (1986) Competition and niche separation in Sphagnum. Canad J Bot 64:1817–1824CrossRefGoogle Scholar
  42. Sengbusch P, Bogenrieder A (2001) Rückgang der Moor-Kiefer im südlichem Schwarzwald. Naturschutz & Landschaftsplanung 33(8):249–254Google Scholar
  43. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  44. Sjörs H. (1952) On the relation between vegetation and electrolytes in north Sweden mire waters. Oikos 2:241–258CrossRefGoogle Scholar
  45. Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. J Ecol 90:268–278CrossRefGoogle Scholar
  46. Tahvanainen T, Sallantaus T, Heikkilä R, Tolonen K (2002) Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Ann Bot Fenn 39:235–251Google Scholar
  47. Tallis JH (1983) Changes in wetland communities. In: Gore AJP (ed) Mires: swamp, bog, fen and moor, general studies. Ecosystems of the World 4A, Elsevier, Amsterdam, pp 311–347Google Scholar
  48. Taylor K, Rowland AP, Jones HE (2001) Molinia caerulea (L.) Moench. J Ecol 89:126–144CrossRefGoogle Scholar
  49. ter Braak CJF, Šmilauer P (2002) Canoco reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  50. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370CrossRefGoogle Scholar
  51. van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114CrossRefGoogle Scholar
  52. Waughman GJ (1980) Chemical aspects of the ecology of some south German peatlands. J Ecol 68:1025–1046CrossRefGoogle Scholar
  53. Wein RW, MacLean DA (1983) The role of fire in northern circumpolar ecosystems. John Wiley & Sons,New YorkGoogle Scholar
  54. Wilson KA, Fitter AH (1984) The role of phosphorus in vegetational differentiation in a small valley mire. J Ecol 72:463–473CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  • Andrea Kučerová
    • 1
  • Ladislav Rektoris
    • 1
    • 2
  • Táňa Štechová
    • 3
  • Marek Bastl
    • 3
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  2. 2.PLA Administration of the Třeboň BasinTřeboňCzech Republic
  3. 3.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations