Skip to main content

Advertisement

Log in

Vegetation at the Limits for Vegetation: Vascular Plants, Bryophytes and Lichens in a Geothermal Field

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The effects of the chemical and physical factors associated with geothermal activity on plant community structure and composition were investigated in one of the largest geothermal fields of central Italy. The study site was located in the geothermal area of Sasso Pisano – Monte Rotondo Marittimo, Southern Tuscany. The percentage cover of all vascular plant, bryophyte and lichen species was estimated within 119 circular plots of 0.25 m2. For each plot the soil pH, soil temperature, slope, aspect, incident radiation, soil nitrogen and carbon contents were also quantified. Two vascular plants, Calluna vulgaris and Agrostis castellana, were found to be the most widespread species tolerating the harshest conditions in terms of low soil pH and high soil temperature. The most widespread cryptogam species was Hypnum cupressiforme. Spatially autoregressive models showed that a proportion of about 41–51% of the variance in species richness of one group of plants (vascular or cryptogamic plants) could be modelled by using three or four uncorrelated environmental factors respectively (soil temperature, soil nitrogen and soil C/N ratio and these three plus incident radiation). For the total number of species (vascular and cryptogamic plants), the variance explained by the same three uncorrelated variables was about 57%. This study evidenced a strong environmental control of community composition and species richness, in a site subjected to extreme soil values of soil pH and temperature. The dominance of vascular over cryptogamic vegetation in this geothermal site can be explained by the combined effects of geothermal stress (low soil pH and high soil temperature) with the summer drought typical of the Mediterranean climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barazzuoli P (1993) Il Clima. In: Giusti F (ed) La storia naturale della Toscana meridionale. Amilcare Pizzi Editore, Milano, pp 141–171

    Google Scholar 

  • Bargagli Petrucci G (1916) Studi sulla Flora Microscopica della Regione Boracifera Toscana. Nuovo Giorn Bot Ital NS 23:171–184

    Google Scholar 

  • Bonini I, Casini F, Chiarucci A, De Dominicis V (2005) The bryophyte flora of the geothermal field of Sasso Pisano (Pisa, Italy). Cryptogam, Bryol, Lichenol 26:291–299

    Google Scholar 

  • Broady P, Given D, Greenfield L, Thompson K (1987) The biota and environment of fumaroles on Mt Melbourne, northern Victoria Land. Polar Biol 7:97–113

    Article  Google Scholar 

  • Brock TD (1985) Life at High Temperature. Science 230:132–138

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1994) Life at high temperatures. Yellowstone Association for Natural Science, History & Education, Inc. Yellowstone National Park, Wyoming

  • Brullo S, Privitera M, Pugliesi M (2001) Phytogeographical considerations on the fumarole bryoflora from from Mediterranean and Macaronesia areas. Bocconea 13:329–336

    Google Scholar 

  • Burns B (1997) Vegetation change along a geothermal stress gradient at the Te Kopia steamfield. J Roy Soc New Zealand 27:279–294

    Google Scholar 

  • Bussotti F, Tognelli R, Montagni G, Borghini F, Bruschi P, Tani C (2003) Response of Quercus pubescens leaves exposed to geothermal pollutant input in southern Tuscany (Italy). Environm Pollut 121:349–361

    Article  PubMed  CAS  Google Scholar 

  • Chiarucci A (2007) To sample or not to sample? That is the question… for the vegetation scientist. Folia Geobot 42:209–216

    Article  Google Scholar 

  • Convey P, Lewis Smith RI (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J Veg Sci 17:529–538

    Article  Google Scholar 

  • Convey P, Lewis Smith RI, Hodgson DA, Peat HJ (2000) The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J Biogeogr 27:1279–1295

    Article  Google Scholar 

  • Cortini Pedrotti C (2001) New check-list of the Mosses of Italy. Fl Medit 11:23–107

    Google Scholar 

  • Duchi V, Manganelli M, Minissale A (1991) Composizione chimica delle fasi fluide naturali superficiali del campo geotermico di Larderello. Boll Soc Geol Ital 110:41–46

    Google Scholar 

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin M-J et al (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

    Article  Google Scholar 

  • Elmarsdottir A, Ingimarsdottir M, Hansen I, Olafsson JS, Olafsson E (2003) Vegetation and invertebrates in three geothermal areas in Iceland. In: International Geothermal Conference, Reykjavík, Sept. 2003, pp 49–55

  • Fiori A (1920) Rilievi geografici e forestali sulla flora del bacino della Cecina e località finitime. Ann Reale Ist Super Forest Naz Firenze 5:151–186

    Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sedim Petrol 44:249–253

    CAS  Google Scholar 

  • Gimingham CH (1960) Biological Flora of the British Isles: Calluna Salisb. J Ecol 48:455–483

    Article  Google Scholar 

  • Given DR (1980) Vegetation on heated soils at Karapiti, central North Island, New Zealand and its relation to ground temperature. New Zealand J Bot 18:1–13

    Google Scholar 

  • Glime JM, Hong WS (1997) Relationships of geothermal bryophyte communities to soil characteristics at Thermal Meadow, Hotsprings Island, Queen Charlotte Islands, Canada. J Bryol 19:435–448

    Google Scholar 

  • Glime JM, Iwatsuki Z (1997) Niche partitioning of plant taxa associated with geothermal vents at Wakoto, Hokkaido, Japan. J Hattori Bot Lab 82:123–141

    Google Scholar 

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Hill MO, Bunce RGH, Shaw MW (1975) Indicator species analyis, a divisive polythetic method of classification and its aplication to a survey of native pinewoods in Scotland. J Ecol 63:597–613

    Article  Google Scholar 

  • Kaiser HF (1958) The Varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Article  Google Scholar 

  • Kissling WD, Carl G (in press) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr

  • Lazzarotto A (1967) Geologia della zona compresa tra l’alta valle del fiume Cornia ed il Torrente Pavone (Prov. di Pisa e Grosseto). Mem Soc Geol Ital 6:151–197

    Google Scholar 

  • Lazzarotto A (1993) Elementi di Geologia. In: Giusti F (ed) La Storia Naturale della Toscana Meridionale. Amilcare Pizzi Editore, Milano, pp 19–87

    Google Scholar 

  • LeSage JP (1999) The theory and practice of spatial econometrics. Available at http://www.spatial-econometrics.com/html/sbook.pdf

  • Lewis Smith RI (2005) The bryophyte flora of geothermal habitats on Deception Island, Antarctica. J Hattori Bot Lab 97:233–248

    Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • Meusel H, Jäger E, Weinert E (1965) Vergleichende chorologie der zentraleuropäischen flora. Gustav Fisher, Jena

    Google Scholar 

  • Moyersoen B, Beever RE (2004) Abundance and characteristics of Pisolithus ectomycorrhizas in New Zealand geothermal areas. Mycologia 96:1225–1232

    Article  Google Scholar 

  • Muukkonen P (2005) Vegetation of geothermal areas on the North Island. New Zealand. Terra 117:265–278

    Google Scholar 

  • Nimis PL, Martellos S (2008) ITALIC - The Information System on Italian Lichens. Version 4.0. University of Trieste, Dept. of Biology, Trieste, IN4. 0/1 (http://dbiodbs.univ.trieste.it/)

  • Ohlemüller R, Wilson JB (2000) Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecol Lett 3:262–266

    Article  Google Scholar 

  • Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon Forests. Ecol Monogr 68:151–182

    Article  Google Scholar 

  • Owen KM, Marrs RH (2000) Creation of heathland on former arable land at Minsmere, Suffolk, UK: the effects of soil acidification on the establishment of Calluna and ruderal species. Biol Conservation 93:9–18

    Article  Google Scholar 

  • Palmer MW, White PS (1994) On the existence of ecological communities. J Veg Sci 5:279–282

    Article  Google Scholar 

  • Pausas JG (1994) Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. J Veg Sci 5:517–524

    Article  Google Scholar 

  • Pausas JG, Carreras J, Ferré A, Font X (2003) Coarse-scale plant species richness in relation to environmental heterogeneity. J Veg Sci 14:661–668

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna

    Google Scholar 

  • Poli E (1970) Aspetti della vita vegetale in ambienti vulcanici. Ann Bot (Roma) 30:47–86

    Google Scholar 

  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992) The lichen flora of Great Britain and Ireland. Natural History Museum, The British Lichen Society, London

    Google Scholar 

  • Redman RS, Litvintseva A, Sheehan KB, Henson JM, Rodriguez RJ (1999) Fungi from geothermal soils in Yellowstone National Park. Appl Environm Microbiol 65:5193–5197

    PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life at extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Selvi F, Bettarini I (1999) Geothermal biotopes in central-western Italy from a botanical view point. In: Raschi A, Vaccari FP, Miglietta F (eds) Ecosystem response to CO 2 : the MAPLE project results. Office for official Publications of the European Communities, Luxembourg, pp 1–12

    Google Scholar 

  • Sharma S (1996) Applied multivariate techniques. John Wiley & Sons, New York

    Google Scholar 

  • Smith CW (1981) Bryophytes and lichens of the Puhimau geothermal area, Hawaii Volcanoes National Park. Bryologist 84:457–466

    Article  Google Scholar 

  • Tretiach M, Ganis P (1999) Hydrogen sulphide and epiphytic lichen vegetation: a case study on Mt. Amiata (Central Italy). Lichenologist 31:163–181

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Ettore Putortì for help during the field sampling, Len Ellis, Maria Privitera, René Schumacker and Cecila Sergio for support during identification of problematic bryophytes specimens. We also thank Radim Hédl and three anonymous referees for useful comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Chiarucci.

Additional information

Plant nomenclature: Pignatti (1982), Cortini Pedrotti (2001), Nimis and Martellos (2008)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarucci, A., Calderisi, M., Casini, F. et al. Vegetation at the Limits for Vegetation: Vascular Plants, Bryophytes and Lichens in a Geothermal Field. Folia Geobot 43, 19–33 (2008). https://doi.org/10.1007/s12224-008-9002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-008-9002-0

Keywords

Navigation