Advertisement

Folia Microbiologica

, Volume 64, Issue 5, pp 691–703 | Cite as

Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina—role of non-photochemical quenching, ions, photoinhibition, and cell motility

  • Radek KaňaEmail author
  • Eva Kotabová
  • Barbora Šedivá
  • Eliška Kuthanová Trsková
Original Article

Abstract

We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.

Abbreviations

CAP

chloramphenicol

FM

maximal chlorophyll a fluorescence for dark-adapted sample

FM

maximal chlorophyll a fluorescence for light-adapted sample

FM

maximal chlorophyll a fluorescence measured in the dark following short light period

FV/FM

maximal efficiency of PSII photochemistry

NPQ

non-photochemical quenching of fluorescence

PSII

photosystem II

Notes

Acknowledgments

We want to thank Ondřej Prášil and Aurelie Crepin for critical reading of the manuscript. We want to acknoledge Jiří Šetlík for his long-term technical assistance during experiments and for skillful adaptation of biophysical instruments.

Funding information

This research project was supported by the Czech Science Foundation (GAČR) (Grantová agentura České republiky) project GACR 16-10088S. The work at center ALGATECH has been supported by the institutional projects Algatech Plus (MSMT LO1416) and Algamic (CZ 1.05/2.1.00/19.0392) from the Czech Ministry of Education, Youth and Sport.

Supplementary material

12223_2019_742_MOESM1_ESM.avi (8 mb)
Supplementary movie 1 (AVI 8211 kb)

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797.  https://doi.org/10.1126/science.1154800 CrossRefPubMedGoogle Scholar
  3. Allorent G, Petroutsos D (2017) Photoreceptor-dependent regulation of photoprotection. Curr Opin Plant Biol 37:102–108.  https://doi.org/10.1016/j.pbi.2017.03.016 CrossRefPubMedGoogle Scholar
  4. Armbruster U, Carrillo LR, Venema K, Pavlovic L, Schmidtmann E, Kornfeld A, Jahns P, Berry JA, Kramer DM, Jonikas MC (2014) Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nat Commun 5:5.  https://doi.org/10.1038/ncomms6439 CrossRefGoogle Scholar
  5. Aro EM et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356.  https://doi.org/10.1093/jxb/eri041 CrossRefPubMedGoogle Scholar
  6. Arvola L, Ojala A, Barbosa F, Heaney SI (1991) Migration behaviour of three cryptophytes in relation to environmental gradients: an experimental approach. Br Phycol J 26:361–373.  https://doi.org/10.1080/00071619100650331 CrossRefGoogle Scholar
  7. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396.  https://doi.org/10.1104/pp.106.082040 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ballottari M et al (2016) Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J Biol Chem 291:7334–7346.  https://doi.org/10.1074/jbc.M115.704601 CrossRefGoogle Scholar
  9. Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry, and biotechnology. Taylor & Francis Group, Boca RatonGoogle Scholar
  10. Behrenfeld MJ, Prasil O, Kolber ZS, Babin M, Falkowski PG (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268.  https://doi.org/10.1023/a:1006138630573 CrossRefGoogle Scholar
  11. Belgio E, Johnson MP, Juric S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771.  https://doi.org/10.1016/j.bpj.2012.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Belgio E, Duffy CDP, Ruban AV (2013) Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys Chem Chem Phys 15:12253–12261.  https://doi.org/10.1039/c3cp51925b CrossRefPubMedGoogle Scholar
  13. Belgio E, Ungerer P, Ruban AV (2015) Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ 38:2035–2047.  https://doi.org/10.1111/pce.12528 CrossRefPubMedGoogle Scholar
  14. Belgio E, Trskova E, Kotabova E, Ewe D, Prasil O, Kana R (2018) High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 135:263–274.  https://doi.org/10.1007/s11120-017-0385-8 CrossRefPubMedGoogle Scholar
  15. Berteotti S, Ballottari M, Bassi R (2016) Increased biomass productivity in green algae by tuning non-photochemical quenching. Sci Rep 6:21339.  https://doi.org/10.1038/srep21339 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Betterle N et al (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266.  https://doi.org/10.1074/jbc.M808625200 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bode S et al (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci U S A 106:12311–12316.  https://doi.org/10.1073/pnas.0903536106 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Campbell DA, Tyystjarvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265.  https://doi.org/10.1016/j.bbabio.2011.04.010 CrossRefPubMedGoogle Scholar
  19. Carraretto L et al (2013) A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342:114–118.  https://doi.org/10.1126/science.1242113 CrossRefPubMedGoogle Scholar
  20. Cazzaniga S, Dall’ Osto L, Kong SG, Wada M, Bassi R (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J 76:568–579.  https://doi.org/10.1111/tpj.12314 CrossRefPubMedGoogle Scholar
  21. Cheregi O, Kotabová E, Prášil O, Schröder WP, Kaňa R, Funk C (2015) Presence of state transitions in the cryptophyte alga Guillardia theta. J Exp Bot 66:6461–6470.  https://doi.org/10.1093/jxb/erv362 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501.  https://doi.org/10.1038/nchembio.1555 CrossRefPubMedGoogle Scholar
  23. Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406.  https://doi.org/10.1093/jxb/eri022 CrossRefPubMedGoogle Scholar
  24. Curtis BA et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65.  https://doi.org/10.1038/nature11681 CrossRefPubMedGoogle Scholar
  25. Dall’Osto L, Cazzaniga S, Wada M, Bassi R (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Philos Trans R Soc B Biol Sci 369.  https://doi.org/10.1098/rstb.2013.0221 CrossRefGoogle Scholar
  26. Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta 1847:468–485.  https://doi.org/10.1016/j.bbabio.2015.02.008 CrossRefPubMedGoogle Scholar
  27. Dilley RA (2004) On why thylakoids energize ATP formation using either delocalized or localized proton gradients - a Ca2+ mediated role in thylakoid stress responses. Photosynth Res 80:245–263CrossRefGoogle Scholar
  28. Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277:22750–22758.  https://doi.org/10.1074/jbc.M200604200 CrossRefPubMedGoogle Scholar
  29. Erata M, Kubota M, Takahashi T, Inouye I, Watanabe M (1995) Ultrastructure and phototactic action spectra of two genera of cryptophyte flagellate algae. Cryptomonas Chroomonas 188:258–266.  https://doi.org/10.1007/BF01280378 CrossRefGoogle Scholar
  30. Ettinger WF, Clear AM, Fanning KJ, Peck ML (1999) Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol 119:1379–1385CrossRefGoogle Scholar
  31. Ewy RG, Dilley RA (2000) Distinguishing between luminal and localized proton buffering pools in thylakoid membranes. Plant Physiol 122:583–596.  https://doi.org/10.1104/pp.122.2.583 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman FA (2006) Nonphotochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498.  https://doi.org/10.1021/bi0521588 CrossRefPubMedGoogle Scholar
  33. Funk C, Alami M, Tibiletti T, Green BR (2011) High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta. Biochim Biophys Acta 1807:841–846.  https://doi.org/10.1016/j.bbabio.2011.03.011 CrossRefPubMedGoogle Scholar
  34. Garcia-Mendoza E, Ocampo-Alvarez H, Govindjee (2011) Photoprotection in the brown alga Macrocystis pyrifera: evolutionary implications. J Photochem Photobiol B Biol 104:377–385.  https://doi.org/10.1016/j.jphotobiol.2011.04.004 CrossRefGoogle Scholar
  35. Giovagnetti V, Ruban AV (2018) The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem Soc Trans 46:1263–1277.  https://doi.org/10.1042/bst20170304 CrossRefPubMedGoogle Scholar
  36. Goral TK, Johnson MP, Brain AP, Kirchhoff H, Ruban AV, Mullineaux CW (2010) Visualizing the mobility and distribution of chlorophyll proteins in higher plant thylakoid membranes: effects of photoinhibition and protein phosphorylation. Plant J 62:948–959.  https://doi.org/10.1111/j.0960-7412.2010.04207.x CrossRefPubMedGoogle Scholar
  37. Goss R, Lepetit B (2014) Biodiversity of NPQ. J Plant Physiol 172:13–32.  https://doi.org/10.1016/j.jplph.2014.03.004 CrossRefPubMedGoogle Scholar
  38. Goss R, Lepetit B, Volke D, Gilbert M, Wilhelm C (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920.  https://doi.org/10.1104/pp.110.166454 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349.  https://doi.org/10.1016/s0006-3495(04)74291-5 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Govorunova EG, Sineshchekov OA, Janz R, Liu XQ, Spudich JL (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650.  https://doi.org/10.1126/science.aaa7484 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Green BR (2011) After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res 107:103–115.  https://doi.org/10.1007/s11120-010-9584-2 CrossRefPubMedGoogle Scholar
  42. Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938.  https://doi.org/10.1016/j.bbabio.2009.02.004 CrossRefPubMedGoogle Scholar
  43. Grouneva I, Rokka A, Aro EM (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353.  https://doi.org/10.1021/pr200600f CrossRefPubMedGoogle Scholar
  44. Häder D-P, Rhiel E, Wehrmeyer W (1987) Phototaxis in the marine flagellate Cryptomonas maculata. J Photochem Photobiol B Biol 1:115–122.  https://doi.org/10.1016/1011-1344(87)80011-8 CrossRefGoogle Scholar
  45. Havelková-Doušová H, Prášil O, Behrenfeld M (2004) Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating irradiance. Photosynthetica 42:273–281CrossRefGoogle Scholar
  46. Havurinne V, Tyystjarvi E (2017) Action spectrum of photoinhibition in the diatom Phaeodactylum tricornutum. Plant Cell Physiol 58:2217–2225.  https://doi.org/10.1093/pcp/pcx156 CrossRefPubMedGoogle Scholar
  47. Hegemann P (1997) Vision in microalgae. Planta 203:265–274.  https://doi.org/10.1007/s004250050191 CrossRefPubMedGoogle Scholar
  48. Herdean A, Nziengui H, Zsiros O, Solymosi K, Garab G, Lundin B, Spetea C (2016a) The arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front Plant Sci 7:7.  https://doi.org/10.3389/fpls.2016.00115 CrossRefGoogle Scholar
  49. Herdean A, Teardo E, Nilsson AK, Pfeil BE, Johansson ON, Ünnep R, Nagy G, Zsiros O, Dana S, Solymosi K, Garab G, Szabó I, Spetea C, Lundin B (2016b) A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat Commun 7:11.  https://doi.org/10.1038/ncomms11654 CrossRefGoogle Scholar
  50. Hill K, Hemmler R, Kovermann P, Calenberg M, Kreimer G, Wagner R (2000) A Ca2+− and voltage-modulated flagellar ion channel is a component of the mechanoshock response in the unicellular green alga Spermatozopsis similis. Biochim Biophys Acta Biomembr 1466:187–204.  https://doi.org/10.1016/S0005-2736(00)00200-5 CrossRefGoogle Scholar
  51. Hochmal AK, Schulze S, Trompelt K, Hippler M (2015) Calcium-dependent regulation of photosynthesis. Biochim Biophys Acta 1847:993–1003.  https://doi.org/10.1016/j.bbabio.2015.02.010 CrossRefPubMedGoogle Scholar
  52. Höhner R, Aboukila A, Kunz H-H, Venema K (2016) Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast. Front Plant Sci 7:7.  https://doi.org/10.3389/fpls.2016.00218 CrossRefGoogle Scholar
  53. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting Science 307:433–436 doi: https://doi.org/10.1126/science.1105833 CrossRefGoogle Scholar
  54. Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373.  https://doi.org/10.1093/jxb/eri023 CrossRefPubMedGoogle Scholar
  55. Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079.  https://doi.org/10.1111/j.1742-4658.2008.06263.x CrossRefPubMedGoogle Scholar
  56. Ivanov AG, Sane PV, Hurry V, Oquist G, Huner NP (2008) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynth Res 98:565–574.  https://doi.org/10.1007/s11120-008-9365-3 CrossRefPubMedGoogle Scholar
  57. Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14.  https://doi.org/10.1016/j.bbabio.2008.09.013 CrossRefPubMedGoogle Scholar
  58. Jegerschold C, Rutherford AW, Mattioli TA, Crimi M, Bassi R (2000) Calcium binding to the photosystem II subunit CP29. J Biol Chem 275:12781–12788CrossRefGoogle Scholar
  59. Johnson G, Krieger A (1994) Thermoluminescence as a probe of Photosystem II in intact leaves: Non-photochemical fluorescence quenching in peas grown in an intermittent light regime. Photosynth Res 41:371–379.  https://doi.org/10.1007/BF02183039 CrossRefPubMedGoogle Scholar
  60. Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289.  https://doi.org/10.1111/j.1365-313X.2009.04051.x CrossRefPubMedGoogle Scholar
  61. Johnson CH, Shingles R, Ettinger WF (2006) Regulation and role of calcium fluxes in the chloroplast. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer Netherlands, Dordrecht, pp 403–416.  https://doi.org/10.1007/978-1-4020-4061-0_20 CrossRefGoogle Scholar
  62. Kale R, Hebert AE, Frankel LK, Sallans L, Bricker TM, Pospisil P (2017) Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II. Proc Natl Acad Sci U S A 114:2988–2993.  https://doi.org/10.1073/pnas.1618922114 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kaňa R (2018) Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae. Photosynthetica 56:132–138.  https://doi.org/10.1007/s11099-018-0780-1 CrossRefGoogle Scholar
  64. Kaňa R, Govindjee (2016) Role of ions in the regulation of light-harvesting. Front Plant Sci 7:7.  https://doi.org/10.3389/fpls.2016.01849 CrossRefGoogle Scholar
  65. Kaňa R, Vass I (2008) Thermoimaging as a tool for studying light-induced heating of leaves: correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ Exp Bot 64:90–96.  https://doi.org/10.1016/j.envexpbot.2008.02.006 CrossRefGoogle Scholar
  66. Kaňa R, Lazár D, Prášil O, Naus J (2002) Experimental and theoretical studies on the excess capacity of photosystem II. Photosynth Res 72:271–284.  https://doi.org/10.1023/a:1019894720789 CrossRefPubMedGoogle Scholar
  67. Kaňa R, Prášil O, Mullineaux CW (2009) Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. FEBS Lett 583:670–674CrossRefGoogle Scholar
  68. Kaňa R, Kotabová E, Sobotka R, Prášil O (2012) Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS One 7:e29700.  https://doi.org/10.1371/journal.pone.0029700 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kaňa R, Kotabová E, Kopečná J, Trsková E, Belgio E, Sobotka R, Ruban AV (2016) Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett 590:1076–1085.  https://doi.org/10.1002/1873-3468.12130 CrossRefPubMedGoogle Scholar
  70. Kaneda H, Furuya M (1986) Temporal changes in swimming direction during the phototactic orientation of individual cells in Cryptomonas sp. Plant Cell Physiol 27:265–271.  https://doi.org/10.1093/oxfordjournals.pcp.a077099 CrossRefGoogle Scholar
  71. Kaneda H, Furuya M (1987a) Effect of calcium-ions on phototactic orientation of individual cryptomonas cells. Plant Sci 48:31–35CrossRefGoogle Scholar
  72. Kaneda H, Furuya M (1987b) Effects of the timing of flashes of light during the course of cellular rotation on phototactic orientation of individual cells of Cryptomonas. Plant Physiol 84:178–181CrossRefGoogle Scholar
  73. Khatoon M et al (2009) Quality control of photosystem II: thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J Biol Chem 284:25343–25352.  https://doi.org/10.1074/jbc.M109.007740 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kirilovsky D, Kaňa R, Prášil O (2014) Mechanisms modulating energy arriving at reaction centers in cyanobacteria. In: Demmig-Adams B, Garab G, Adams iii W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, Advances in photosynthesis and respiration, vol 40. Springer, Netherlands, pp 471–501.  https://doi.org/10.1007/978-94-017-9032-1_22 CrossRefGoogle Scholar
  75. Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21:234–244.  https://doi.org/10.1016/0006-3002(56)90003-8 CrossRefPubMedGoogle Scholar
  76. Komenda J, Barker M, Kuvikova S, de Vries R, Mullineaux CW, Tichy M, Nixon PJ (2006) The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281:1145–1151.  https://doi.org/10.1074/jbc.M503852200 CrossRefPubMedGoogle Scholar
  77. Kosugi M et al (2018) A comparative study of wavelength-dependent photoinactivation in photosystem II of drought-tolerant photosynthetic organisms in Antarctica and the potential risks of photoinhibition in the habitat. Ann Bot.  https://doi.org/10.1093/aob/mcy139 CrossRefGoogle Scholar
  78. Kotabová E, Kaňa R, Jarešova J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945.  https://doi.org/10.1016/j.febslet.2011.05.015 CrossRefPubMedGoogle Scholar
  79. Krause GH, Briantais JM, Vernotte C (1983) Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77-K .1. Δph-dependent quenching. Biochim Biophys Acta 723:169–175.  https://doi.org/10.1016/0005-2728(83)90116-0 CrossRefGoogle Scholar
  80. Krieger A, Weis E (1993) The role of calcium in the pH-dependent control of photosystem II. Photosynth Res 37:117–130.  https://doi.org/10.1007/bf02187470 CrossRefPubMedGoogle Scholar
  81. Krieger A, Moya I, Weis E (1992) Energy-dependent quenching of chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem II preparations. 1102.  https://doi.org/10.1016/0167-4838(92)90507-A CrossRefGoogle Scholar
  82. Kruger TPJ, Wientjes E, Croce R, van Grondelle R (2011) Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci U S A 108:13516–13521.  https://doi.org/10.1073/pnas.1105411108 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Krupnik T et al (2013) A reaction centre-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga Cyanidioschyzon merolae. J Biol Chem 288:23529–23542.  https://doi.org/10.1074/jbc.M113.484659 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Krynicka V, Shao S, Nixon PJ, Komenda J (2015) Accessibility controls selective degradation of photosystem II subunits by FtsH protease. Nat Plants 1:15168.  https://doi.org/10.1038/nplants.2015.168 CrossRefPubMedGoogle Scholar
  85. Kunz HH, Gierth M, Herdean A, Satoh-Cruz M, Kramer DM, Spetea C, Schroeder JI (2014) Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci U S A 111:7480–7485.  https://doi.org/10.1073/pnas.1323899111 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kuthanová Trsková E, Belgio E, Yeates AM, Sobotka R, Ruban AV, Kaňa R (2018) Antenna proton sensitivity determines photosynthetic light harvesting strategy. J Exp Bot 69:4483–4493.  https://doi.org/10.1093/jxb/ery240 CrossRefGoogle Scholar
  87. Kuthanová Trsková E, Bína D, Santabarbara S, Sobotka R, Kaňa R, Belgio E (2019) Isolation and characterization of CAC antenna proteins and photosystem I supercomplex from the cryptophytic alga Rhodomonas salina. Physiol Plant 166:309-319.  https://doi.org/10.1111/ppl.12928 CrossRefGoogle Scholar
  88. Lavaud J, Kroth PG (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiol 47:1010–1016.  https://doi.org/10.1093/pcp/pcj058 CrossRefPubMedGoogle Scholar
  89. Lavaud J, Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochim Biophys Acta 1827:294–302.  https://doi.org/10.1016/j.bbabio.2012.11.012 CrossRefPubMedGoogle Scholar
  90. Lavaud J, Rousseau B, Etienne AL (2002a) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166CrossRefGoogle Scholar
  91. Lavaud J, Rousseau B, van Gorkom H, Etienne A (2002b) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406CrossRefGoogle Scholar
  92. Lavaud J, van Gorkom HJ, Etienne A-L (2002c) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74:51–59.  https://doi.org/10.1023/A:1020890625141 CrossRefPubMedGoogle Scholar
  93. Lavaud J, Rousseau B, Etienne AL (2003) Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42:5802–5808.  https://doi.org/10.1021/bi027112i CrossRefPubMedGoogle Scholar
  94. Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511812897 CrossRefGoogle Scholar
  95. Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395CrossRefGoogle Scholar
  96. Li ZR, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260.  https://doi.org/10.1146/annurev.arplant.58.032806.103844 CrossRefPubMedGoogle Scholar
  97. Li XM, Zhang QS, Tang YZ, Yu YQ, Liu HL, Li LX (2014) Highly efficient photoprotective responses to high light stress in Sargassum thunbergii germlings, a representative brown macroalga of intertidal zone. J Sea Res 85:491–498.  https://doi.org/10.1016/j.seares.2013.08.004 CrossRefGoogle Scholar
  98. Li L, Aro EM, Millar AH (2018) Mechanisms of photodamage and protein turnover in photoinhibition. Trends Plant Sci 23:667–676.  https://doi.org/10.1016/j.tplants.2018.05.004 CrossRefPubMedGoogle Scholar
  99. Liguori N, Roy LM, Opacic M, Durand G, Croce R (2013) Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 135:18339–18342.  https://doi.org/10.1021/ja4107463 CrossRefPubMedGoogle Scholar
  100. Magdaong NCM, Blankenship RE (2018) Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. J Biol Chem 293:5018–5025.  https://doi.org/10.1074/jbc.TM117.000233 CrossRefPubMedPubMedCentralGoogle Scholar
  101. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294.  https://doi.org/10.1111/j.1469-8137.2008.02682.x CrossRefPubMedGoogle Scholar
  102. Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, Secchi ER (2018) New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep-Sea Res II Top Stud Oceanogr 149:161–170.  https://doi.org/10.1016/j.dsr2.2017.02.010 CrossRefGoogle Scholar
  103. Miqyass M, van Gorkom HJ, Yocum CF (2007) The PSII calcium site revisited. Photosynth Res 92:275–287.  https://doi.org/10.1007/s11120-006-9124-2 CrossRefPubMedGoogle Scholar
  104. Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefGoogle Scholar
  105. Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817:247–257.  https://doi.org/10.1016/j.bbabio.2011.04.011 CrossRefPubMedGoogle Scholar
  106. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398.  https://doi.org/10.1126/science.1072068 CrossRefPubMedGoogle Scholar
  107. Nagel G et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945.  https://doi.org/10.1073/pnas.1936192100 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134.  https://doi.org/10.2307/3870716 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ohad I, Raanan H, Keren N, Tchernov D, Kaplan A (2010) Light-induced changes within photosystem II protects Microcoleus sp in biological desert sand crusts against excess light. PLoS One 5:e11000.  https://doi.org/10.1371/journal.pone.0011000 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pan RS, Dilley RA (2000) Influence of Ca2+ on the thylakoid lumen violaxanthin de-epoxidase activity through Ca2+ gating of H+ flux at the CFoH+ channel. Photosynth Res 65:141–154CrossRefGoogle Scholar
  111. Papageorgiou GC, Alygizaki-Zorba A, Ladas N, Murata N (1998) A method to probe the cytoplasmic osmolality and osmotic water and solute fluxes across the cell membrane of cyanobacteria with chlorophyll a fluorescence: experiments with Synechococcus sp. PCC7942 103:215-224.  https://doi.org/10.1034/j.1399-3054.1998.1030209.x CrossRefGoogle Scholar
  112. Peers G et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–U215.  https://doi.org/10.1038/nature08587 CrossRefPubMedGoogle Scholar
  113. Petroutsos D et al (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23:2950–2963.  https://doi.org/10.1105/tpc.111.087973 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE (2009) Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325:487–490.  https://doi.org/10.1126/science.1172667 CrossRefPubMedGoogle Scholar
  115. Prášil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery processes. In: Barber J (ed) The photosystems: structure, function and molecular biology, vol 11. Elsevier Science, Oxford, pp 295–348Google Scholar
  116. Quigg A et al (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS One 7:e47036.  https://doi.org/10.1371/journal.pone.0047036 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Roh MH, Shingles R, Cleveland MJ, McCarty RE (1998) Direct measurement of calcium transport across chloroplast inner-envelope vesicles. Plant Physiol 118:1447–1454.  https://doi.org/10.1104/pp.118.4.1447 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Ruban AV, Horton P (1995) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated-chloroplasts and leaves of spinach. Plant Physiol 108:721–726CrossRefGoogle Scholar
  119. Ruban AV et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–U522.  https://doi.org/10.1038/nature06262 CrossRefPubMedGoogle Scholar
  120. Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181.  https://doi.org/10.1016/j.bbabio.2011.04.007 CrossRefPubMedGoogle Scholar
  121. Schmid R, Junge W (1975) Current-voltage studies on the thylakoid membrane in the presence of ionophores. Biochim Biophys Acta 394:76–92CrossRefGoogle Scholar
  122. Sineshchekov OA, Govorunova EG, Jung KH, Zauner S, Maier UG, Spudich JL (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319.  https://doi.org/10.1529/biophysj.105.070920 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Slavov C et al (2016) “Super-quenching” state protects Symbiodinium from thermal stress - implications for coral bleaching. Biochim Biophys Acta 1857:840–847.  https://doi.org/10.1016/j.bbabio.2016.02.002 CrossRefPubMedGoogle Scholar
  124. Smith EF (2002) Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase. Mol Biol Cell 13:3303–3313.  https://doi.org/10.1091/mbc.e02-04-0185 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Staleva H, Komenda J, Shukla MK, Slouf V, Kana R, Polivka T, Sobotka R (2015) Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat Chem Biol 11:287–291.  https://doi.org/10.1038/nchembio.1755 CrossRefGoogle Scholar
  126. Suetsugu N, Wada M (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 388:927–935.  https://doi.org/10.1515/bc.2007.118 CrossRefPubMedGoogle Scholar
  127. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQP, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107:8860–8865.  https://doi.org/10.1073/pnas.0912773107 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638.  https://doi.org/10.1104/pp.106.090712 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238.  https://doi.org/10.1016/j.bbabio.2011.05.005 CrossRefPubMedGoogle Scholar
  130. Ting CS, Owens TG (1994) The effects of excess irradiance on photosynthesis in the marine diatom phaeodactylum-tricornutum. Plant Physiol 106:763–770CrossRefGoogle Scholar
  131. Tyystjarvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A 93:2213–2218.  https://doi.org/10.1073/pnas.93.5.2213 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Van Walraven HS, Scholts MJC, Zakharov SD, Kraayenhof R, Dilley RA (2002) pH-dependent Ca2+ binding to the F-0 c-subunit affects proton translocation of the ATP synthase from Synechocystis 6803. J Bioenerg Biomembr 34:455–464CrossRefGoogle Scholar
  133. Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:6–16.  https://doi.org/10.1111/j.1399-3054.2011.01454.x CrossRefPubMedGoogle Scholar
  134. Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217.  https://doi.org/10.1016/j.bbabio.2011.04.014 CrossRefPubMedGoogle Scholar
  135. Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205.  https://doi.org/10.1016/j.tplants.2009.01.009 CrossRefPubMedGoogle Scholar
  136. Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol 187:23–43.  https://doi.org/10.1111/j.1469-8137.2010.03271.x CrossRefPubMedGoogle Scholar
  137. Wada M (2016) Chloroplast and nuclear photorelocation movements. Proc Jpn Acad Ser B Phys Biol Sci 92:387–411.  https://doi.org/10.2183/pjab.92.387 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Walters RG, Ruban AV, Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Natl Acad Sci U S A 93:14204–14209CrossRefGoogle Scholar
  139. Wang C et al (2016) A putative chloroplast-localized Ca2+/H+ antiporter CCHA1 is involved in calcium and pH homeostasis and required for PSII function in Arabidopsis. Mol Plant 9:1183–1196.  https://doi.org/10.1016/j.molp.2016.05.015 CrossRefPubMedGoogle Scholar
  140. Watanabe M, Furuya M (1974) Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sp. Plant Cell Physiol 15:413–420.  https://doi.org/10.1093/oxfordjournals.pcp.a075021 CrossRefGoogle Scholar
  141. Watanabe M, Furuya M (1978) Phototactic responses of cell population to repeated pulses of yellow light in a phytoflagellate Cryptomonas sp. Plant Physiol 61:816–818CrossRefGoogle Scholar
  142. Watanabe M, Furuya M (1982) Phototactic behaviour of individual cells of Cryptomonas sp. in response to continuous and intermittent light stimuli. Photochem Photobiol 35:559–563.  https://doi.org/10.1111/j.1751-1097.1982.tb02609.x CrossRefGoogle Scholar
  143. Watanabe M, Miyoshi Y, Furuya M (1976) Phototaxis in Cryptomonas sp. under condition suppressing photosynthesis. Plant Cell Physiol 17:683–690.  https://doi.org/10.1093/oxfordjournals.pcp.a075324 CrossRefGoogle Scholar
  144. Xu P, Tian L, Kloz M, Croce R (2015) Molecular insights into zeaxanthin-dependent quenching in higher plants. Sci Rep 5:13679.  https://doi.org/10.1038/srep13679 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yamamoto Y et al (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608.  https://doi.org/10.1007/s11120-008-9372-4 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2019

Authors and Affiliations

  1. 1.Institute of Microbiology, Centre ALGATECHCzech Academy of SciencesTřeboňCzech Republic
  2. 2.Student of Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic

Personalised recommendations